分析 (1)由題意可知:設所求雙曲線的方程為:${x^2}-\frac{y^2}{4}=λ({λ≠0})$,將點(-3,$4\sqrt{2}$),代入拋物線方程,求得λ的值,求得雙曲線方程;
(2)將直線方程代入橢圓方程,由韋達定理及弦長公式,即可求出弦|AB|的值..
解答 解:(1)由雙曲線的漸進線方程為y=±2x,則設所求雙曲線的方程為:${x^2}-\frac{y^2}{4}=λ({λ≠0})$,
把$({-3,4\sqrt{2}})$代入方程,整理得:$9-\frac{32}{4}=λ$,
解得:λ=1,
∵雙曲線的方程為:${x^2}-\frac{y^2}{4}=1$;
(2)由題意可知:設A(x1,y1),B(x1,y1),
則$\left\{\begin{array}{l}{4x-y-6=0}\\{{x}^{2}-\frac{{y}^{2}}{4}=1}\end{array}\right.$整理得:3x2-12x+10=0,
由韋達定理得:${x_1}+{x_2}=4,{x_1}{x_2}=\frac{10}{3}$,
由弦長公式可知:$|{AB}|=\sqrt{({1+{k^2}})[{{{({{x_1}+{x_2}})}^2}-4{x_1}{x_2}}]}=\sqrt{({1+16})({{4^2}-4×\frac{10}{3}})}=\frac{{2\sqrt{102}}}{3}$,
∴|AB|的值$\frac{2\sqrt{102}}{3}$.
點評 本題考查雙曲線的方程和幾何性質,考查直線和雙曲線的位置關系,韋達定理及弦長公式的應用,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com