分析:(1)當(dāng)n=2時(shí),f(x)=
+aln(x-1),(x>1).f′(x)=
.對a分類討論:a≤0,a>0時(shí),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得出;
(2)當(dāng)a=1時(shí),函數(shù)f(x)=
+ln(x-1),n∈N
*,(x≥2).令h(x)=
+ln(x-1)-(x-1)(x≥2),則h′(x)=
+.當(dāng)n為正偶數(shù)時(shí),可得h′(x)<0,利用h(x)在[2,+∞)上單調(diào)遞減,即可證明.當(dāng)n為正奇數(shù)時(shí),f(x)=
+ln(x-1),當(dāng)x≥2時(shí),
<0,f(x)<ln(x-1),又ln(x-1)<x-1,因此f(x)<x-1恒成立.利用導(dǎo)數(shù)給出證明即可
解答:
(1)解:當(dāng)n=2時(shí),f(x)=
+aln(x-1),(x>1).
∴f′(x)=
.(i)當(dāng)a≤0時(shí),f′(x)<0,函數(shù)f(x)在(1,+∞)上單調(diào)遞減.
(ii)當(dāng)a>0時(shí),令f′(x)=0,解得x=1
±.
當(dāng)x∈
(1,1+)時(shí),f′(x)<0,函數(shù)f(x)在區(qū)間
(1,1+)上單調(diào)遞減;
當(dāng)x∈
(1+,+∞)時(shí),f′(x)>0,函數(shù)f(x)在區(qū)間
(1+,+∞)上單調(diào)遞增.
綜上所述:當(dāng)a≤0時(shí),函數(shù)f(x)在(1,+∞)上單調(diào)遞減.
當(dāng)a>0時(shí),函數(shù)f(x)在區(qū)間
(1,1+)上單調(diào)遞減;函數(shù)f(x)在區(qū)間
(1+,+∞)上單調(diào)遞增.
(2)證明:當(dāng)a=1時(shí),函數(shù)f(x)=
+ln(x-1),n∈N
*,(x≥2).
令h(x)=
+ln(x-1)-(x-1)(x≥2),則h′(x)=
+.
(i)當(dāng)n為正偶數(shù)時(shí),h′(x)<0,∴h(x)在[2,+∞)上單調(diào)遞減,∴h(x)≤h(2)=0.
即
+ln(x-1)≤x-1(x≥2).
∴對?n為正偶數(shù),當(dāng)x≥2時(shí),恒有y=f(x)圖象不可能在y=x-1圖象的上方.
(ii)當(dāng)n為正奇數(shù)時(shí),f(x)=
+ln(x-1),
當(dāng)x≥2時(shí),∵
<0,∴f(x)<ln(x-1),又ln(x-1)<x-1,因此f(x)<x-1恒成立.
下面給出證明:令g(x)=ln(x-1)-(x-1)(x≥2).則g′(x)=
-1=
≤0,
∴g(x)在[2,+∞)單調(diào)遞減.
∴g(x)≤g(2)=-1<0,∴l(xiāng)n(x-1)<x-1恒成立.
因此f(x)<x-1恒成立.
對?n為正奇數(shù),當(dāng)x≥2時(shí),恒有y=f(x)圖象不可能在y=x-1圖象的上方.
故當(dāng)a=1時(shí),對?n∈N
*,當(dāng)x≥2時(shí),恒有y=f(x)圖象不可能在y=x-1圖象的上方.