分析 (1)利用遞推關(guān)系即可得出.
(2)由an≠0,an+1≠0,對(duì)an-an+1=2anan+1左右兩邊同時(shí)除以anan+1得$\frac{a_n}{{{a_n}{a_{n+1}}}}-\frac{{{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=2$,化簡利用等差數(shù)列的通項(xiàng)公式即可得出,再利用“裂項(xiàng)求和”方法即可得出.
解答 解:(1)由an-an+1=2anan+1,及a1=1知n=1時(shí),a1-a2=2a1a2,${a_2}=\frac{1}{3}$;n=2時(shí),a2-a3=2a2a3,${a_3}=\frac{1}{5}$.
(2)∵an≠0,∴an+1≠0,對(duì)an-an+1=2anan+1左右兩邊同時(shí)除以anan+1得$\frac{a_n}{{{a_n}{a_{n+1}}}}-\frac{{{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=2$,即$\frac{1}{{{a_{n+1}}}}-\frac{1}{a_n}=2$(n∈N*),易知$\frac{1}{a_1}=1$,
∴數(shù)列$\{\frac{1}{a_n}\}$是以1為首項(xiàng)2為公差的等差數(shù)列,
∴$\frac{1}{a_n}=1+(n-1)×2=2n-1$,${a_n}=\frac{1}{2n-1}$,
(3)${b_n}=\frac{1}{2n-1}•\frac{1}{2n+1}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
${S_n}=\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+…+(\frac{1}{2n-1}-\frac{1}{2n+1})]=\frac{1}{2}(1-\frac{1}{2n+1})$.
∵n∈N*,∴$\frac{1}{2n+1}>0$,∴$1-\frac{1}{2n+1}<1$,∴${S_n}<\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、遞推關(guān)系、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{25}$ | C. | $\frac{1}{30}$ | D. | $\frac{1}{32}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{π}{8}$ | D. | 1-$\frac{π}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com