如圖,在四棱錐中,底面為直角梯形,∥,,平面⊥底面,為的中點(diǎn),是棱上的點(diǎn),,,.
(Ⅰ)求證:平面⊥平面;
(Ⅱ)若為棱的中點(diǎn),求異面直線與所成角的余弦值.
(Ⅰ)詳見解析;(Ⅱ)異面直線與所成角的余弦值為
解析試題分析:(Ⅰ)證兩平面垂直,先證一個面內(nèi)的一條直線垂直另一個平面.
在本題中可證得:平面,也可證:⊥平面.
(Ⅱ)法一、由(Ⅰ)題可得:直線、、兩兩垂直,故可以為原點(diǎn)建立空間直角坐標(biāo)系,利用空間向量求異面直線與所成角的余弦值.
法二、可過作的平行線,從而將異面直線與所成角轉(zhuǎn)化相交直線所成的角.
試題解析:(Ⅰ)法一:為的中點(diǎn),
又即
∴四邊形為平行四邊形,
即
又∵平面平面 且平面平面
平面
又平面,∴平面平面 6分
法二:,,為的中點(diǎn),∴且.
∴四邊形為平行四邊形,∴
∵ ∴即
∵ ∴
∵ ,
∴⊥平面.
∵ 平面,
∴平面⊥平面. 6分
(Ⅱ)∵,為的中點(diǎn),
∴.
∵平面平面 且平面平面
∴平面. 8分
(注:不證明PQ⊥平面ABCD直接建系扣
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明:B1C1⊥CE;
(2)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為.求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE.
(1) 證明:BD⊥平面PAC;
(2) 若AD=2,當(dāng)PC與平面ABCD所成角的正切值為時,求四棱錐P-ABCD的外接球表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,四邊形為矩形,為等腰三角形,,平面 平面,且,分別為和的中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正方形與梯形所在平面互相垂直,,,點(diǎn)在線段上且不與重合。
(Ⅰ)當(dāng)點(diǎn)M是EC中點(diǎn)時,求證:BM//平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐A-BCDE中,側(cè)面∆ADE是等邊三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中點(diǎn),F(xiàn)是AC的中點(diǎn),且AC=4,
求證:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正三棱柱中,,,為上的動點(diǎn).
(1)求五面體的體積;
(2)當(dāng)在何處時,平面,請說明理由;
(3)當(dāng)平面時,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,菱形的邊長為4,,.將菱形沿對角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn),.
(1)求證:平面;
(2)求證:平面平面;
(3)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com