9.設(shè)函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則z=$\frac{2}{a}$+$\frac{5}$的最小值是( 。
A.$\sqrt{10}$B.2$\sqrt{2}$C.2$\sqrt{10}$D.2

分析 由f(x)=|lgx|,0<a<b,f(a)=f(b),可得到;lgb=-lga>0,于是有ab=1,利用基本不等式即可求z=$\frac{2}{a}$+$\frac{5}$的最小值.

解答 解;∵f(x)=|lgx|,0<a<b,f(a)=f(b),
∴|lgb|=|lga|,而|lgb|=lgb,|lga|=-lga,
∴l(xiāng)gb=-lga,即lgb+lga=0,
∴ab=1,
∴$\frac{2}{a}$+$\frac{5}$=($\frac{2}{a}$+$\frac{5}$)ab=5a+2b,
b=$\frac{1}{a}$,又0<a<b,
∴5a+2b=5a+$\frac{2}{a}$≥2$\sqrt{5a•\frac{2}{a}}$=2$\sqrt{10}$,
當(dāng)且僅當(dāng)5a=$\frac{2}{a}$時(shí)“=”成立,
故選:C.

點(diǎn)評(píng) 本題考查基本不等式,得到lgb+lga=0是解決問題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列有關(guān)命題:①設(shè)m∈R,命題“若a>b,則am2>bm2”的逆否命題為假命題;②命題p:?α,β∈R,tan(α+β)=tanα+tanβ的否定¬p:?α,β∈R,tan(α+β)≠tanα+tanβ;③設(shè)a,b為空間任意兩條直線,則“a∥b”是“a與b沒有公共點(diǎn)”的充要條件.其中正確的是( 。
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在y=3x,y=log0.3x,y=x3,y=$\sqrt{x}$,這四個(gè)函數(shù)中當(dāng)0<x1<x2<1時(shí),使f$(\frac{{{x_1}+{x_2}}}{2})$<$\frac{{f({x_1})+f({x_2})}}{2}$恒成立的函數(shù)的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則z=16a2+4a+b2+b的最小值是( 。
A.12B.18C.20D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=CD=CE=2BG=2.
(1)證明:AG∥平面BDE;
(2)求二面角E-BD-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對(duì)于函數(shù)f(x) 若存在常數(shù)s,使得對(duì)定義域內(nèi)的每一個(gè)x的值,都有f(x)=-f(2s-x),則稱f(x)為“和諧函數(shù)”,給出下列函數(shù)①f(x)=$\frac{1}{x+1}$  ②f(x)=(x-1)2  ③f(x)=x3+x2+1   ④f(x)=xcosx,其中所有“和諧函數(shù)”的序號(hào)是( 。
A.①③B.②③C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-x2+x,g(x)=(m-1)x2+2mx-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x>0時(shí)關(guān)于x的不等式f(x)≤g(x)恒成立,求整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.曲線y=x2,x=0,y=1,所圍成的圖形的面積為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,點(diǎn)列{An}、{Bn}分別在銳角兩邊(不在銳角頂點(diǎn)),且|AnAn+1|=|An+1An+2|,An≠An+2,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*(P≠Q(mào)表示點(diǎn)P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( 。
A.{dn}是等差數(shù)列B.{Sn}是等差數(shù)列
C.{d${\;}_{n}^{2}$}是等差數(shù)列D.{S${\;}_{n}^{2}$}是等差數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案