已知為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式:
(2)設(shè),求數(shù)列{}的前n項(xiàng)和Tn
(1);(Ⅱ).

試題分析:(1)設(shè)在等比數(shù)列中,公比為,
根據(jù)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032548773586.png" style="vertical-align:middle;" />成等差數(shù)列.建立的方程.
(Ⅱ)由(I)可得.從其結(jié)構(gòu)上不難看出,應(yīng)用“錯(cuò)位相減法”求和.
此類問題的解答,要特別注意和式中的“項(xiàng)數(shù)”.
試題解析:(1)設(shè)在等比數(shù)列中,公比為,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032548773586.png" style="vertical-align:middle;" />成等差數(shù)列.
所以                            2分

解得                                        4分
所以                                   6分
(Ⅱ).


②           8分
①—②,得


                                              10分
所以                                        12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項(xiàng)和滿足
(Ⅰ)證明為等比數(shù)列,并求的通項(xiàng)公式;
(Ⅱ)設(shè);求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,前n項(xiàng)和為,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列前n項(xiàng)和為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知等比數(shù)列滿足.
(1)求數(shù)列的前15項(xiàng)的和;
(2)若等差數(shù)列滿足,,求數(shù)列的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的公差,,若的等比中項(xiàng),則=(    )
A.3或6B.3 或9C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列為等差數(shù)列,若,則(      )
A.36B.42C.45D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在遞減等差數(shù)列中,若,則取最大值時(shí)n等于(   )
A.2B.3C.4D.2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知無窮數(shù)列具有如下性質(zhì):①為正整數(shù);②對(duì)于任意的正整數(shù),當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.在數(shù)列中,若當(dāng)時(shí),,當(dāng)時(shí),,),則首項(xiàng)可取數(shù)值的個(gè)數(shù)為   (用表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案