分析 (1)利用角恒等變換,化簡(jiǎn)已知等式可得cos(B+C)=-$\frac{1}{2}$,結(jié)合三角形內(nèi)角的范圍算出B+C=$\frac{2π}{3}$,再利用三角形內(nèi)角和即可得到A的大小;
(2)根據(jù)三角形面積公式可求bc的值,由余弦定理a2=b2+c2-2bccosA,代入數(shù)據(jù)化簡(jiǎn)可得(b+c)2-3bc=7,兩式聯(lián)立可算出b+c的值.
解答 (本題滿分為12分)
解:(1)∵2cos(B-C)-1=4cosBcosC,
∴2(cosBcosC+sinBsinC)-1=4cosBcosC,
即2(cosBcosC-sinBsinC)=-1,可得2cos(B+C)=-1,
∴cos(B+C)=-$\frac{1}{2}$.
∵0<B+C<π,可得B+C=$\frac{2π}{3}$.
∴A=π-(B+C)=$\frac{π}{3}$.…(6分)
(2)由(1),得A=$\frac{π}{3}$.
∵S△ABC=$\frac{3\sqrt{3}}{2}$=$\frac{1}{2}$bcsin$\frac{π}{3}$,
∴得bc=6.①
由余弦定理a2=b2+c2-2bccosA,得:7=b2+c2-2bccos$\frac{π}{3}$,即b2+c2-bc=7
∴(b+c)2-3bc=7 ②
將①代入②,得(b+c)2-18=7,可得:(b+c)2=25,得b+c=5.…(12分).
點(diǎn)評(píng) 本題給出三角形的角滿足的條件,求A的大小,并在已知三角形面積的情況下求邊長(zhǎng).著重考查了三角恒等變換、正余弦定理和三角形面積公式等知識(shí),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $8\sqrt{3}$ | B. | 16 | C. | 8 | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{3}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{4}$,1) | B. | ($\frac{3}{4}$,$\frac{3}{2}$) | C. | ($\frac{1}{4}$,$\frac{5}{4}$) | D. | ($\frac{5}{4}$,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a | B. | 2a | C. | 2$\sqrt{1-a}$-4 | D. | 2$\sqrt{2-a}$-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2y2-4y-4=0可化為(y-1)2=4 | B. | x2-2x-9=0可化為(x-1)2=8 | ||
C. | x2+8x-9=0可化為(x+4)2=16 | D. | x2-4x=0可化為(x-2)2=4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com