【題目】

已知點(diǎn)A(2,0),B(2,0),動(dòng)點(diǎn)M(x,y)滿足直線AMBM的斜率之積為.M的軌跡為曲線C.

1)求C的方程,并說(shuō)明C是什么曲線;

2)過(guò)坐標(biāo)原點(diǎn)的直線交CPQ兩點(diǎn),點(diǎn)P在第一象限,PEx軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G.

i)證明:是直角三角形;

ii)求面積的最大值.

(二)選考題:共10請(qǐng)考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計(jì)分

【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析

【解析】

1)分別求出直線AMBM的斜率,由已知直線AMBM的斜率之積為,可以得到等式,化簡(jiǎn)可以求出曲線C的方程,注意直線AMBM有斜率的條件;

2)(i)設(shè)出直線的方程,與橢圓方程聯(lián)立,求出PQ兩點(diǎn)的坐標(biāo),進(jìn)而求出點(diǎn)的坐標(biāo),求出直線的方程,與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出的坐標(biāo),再求出直線的斜率,計(jì)算的值,就可以證明出是直角三角形;

ii)由(i)可知三點(diǎn)坐標(biāo),是直角三角形,求出的長(zhǎng),利用面積公式求出的面積,利用導(dǎo)數(shù)求出面積的最大值.

1)直線的斜率為,直線的斜率為,由題意可知:,所以曲線C是以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,不包括左右兩頂點(diǎn)的橢圓,其方程為

2)(i)設(shè)直線的方程為,由題意可知,直線的方程與橢圓方程聯(lián)立,,點(diǎn)P在第一象限,所以,因此點(diǎn)的坐標(biāo)為

直線的斜率為,可得直線方程:,與橢圓方程聯(lián)立,,消去得,*),設(shè)點(diǎn),顯然點(diǎn)的橫坐標(biāo)是方程(*)的解

所以有,代入直線方程中,得

,所以點(diǎn)的坐標(biāo)為

直線的斜率為; ,

因?yàn)?/span>所以,因此是直角三角形;

ii)由(i)可知:

的坐標(biāo)為,

,

,

,因?yàn)?/span>,所以當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,因此當(dāng)時(shí),函數(shù)有最大值,最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為,點(diǎn),點(diǎn)M為圓上的任意一點(diǎn),線段的垂直平分線與線段相交于點(diǎn)N.

(1)求點(diǎn)N的軌跡C的方程.

(2)已知點(diǎn),過(guò)點(diǎn)A且斜率為k的直線交軌跡C于兩點(diǎn),以為鄰邊作平行四邊形,是否存在常數(shù)k,使得點(diǎn)B在軌跡C上,若存在,求k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】首項(xiàng)為O的無(wú)窮數(shù)列同時(shí)滿足下面兩個(gè)條件:

;②

(1)請(qǐng)直接寫(xiě)出的所有可能值;

(2)記,若對(duì)任意成立,求的通項(xiàng)公式;

(3)對(duì)于給定的正整數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn),的連線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于,兩點(diǎn),判斷直線與以線段為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱(chēng)美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);

(Ⅲ)當(dāng)時(shí),若對(duì),都有)成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,上頂點(diǎn)為.已知橢圓的短軸長(zhǎng)為4,離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點(diǎn)在橢圓上,且異于橢圓的上、下頂點(diǎn),點(diǎn)為直線軸的交點(diǎn),點(diǎn)軸的負(fù)半軸上.若為原點(diǎn)),且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,.

1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案