已知不等式數(shù)學(xué)公式-2sin2θ<3a+6對(duì)于數(shù)學(xué)公式恒成立,求a的取值范圍.

解:設(shè)sinθ+cosθ=x,則
從而原不等式可化為:


∴原不等式等價(jià)于不等式(1)∵,∴2x-3<0
(1)不等式恒成立等價(jià)于恒成立.
從而只要
又容易知道上遞減,∴
所以a>3.
分析:設(shè)sinθ+cosθ=x,則原不等式可化為:,然后轉(zhuǎn)化成恒成立,將a分離出來(lái),從而只要,根據(jù)函數(shù)的單調(diào)性求出即可求出a的范圍.
點(diǎn)評(píng):本題主要考查了三角函數(shù)中的恒等變換應(yīng)用,以及換元法的應(yīng)用,解題的關(guān)鍵是恒等式的轉(zhuǎn)化變形,以及利用函數(shù)的單調(diào)性求最值,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(在下列兩題中任選一題,若兩題都做,按第①題給分)
①若曲線C1:θ=
π
6
(ρ∈R)與曲線C2
x=a+
2
cosθ
y=
2
sinθ
為參數(shù),a為常數(shù),a>0)有兩個(gè)交點(diǎn)A、B,且|AB|=2,則實(shí)數(shù)a的值為
2
2

②已知a2+2b2+3c2=6,若存在實(shí)數(shù)a,b,c,使得不等式a+2b+3c>|x+1|成立,則實(shí)數(shù)x的取值范圍為
{x|-7<x<5}
{x|-7<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題(請(qǐng)考生在三個(gè)小題中任選一題作答,如果多做,則按所做的第一題評(píng)閱記分)
(A)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系x0y中,以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知圓C與直線l的方程分別為:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t為參數(shù)).若圓C被直線l平分,則實(shí)數(shù)x0的值為
-1
-1

(B)(不等式選做題)若關(guān)于x的不等式|x-m|<2成立的充分不必要條件是2≤x≤3,則實(shí)數(shù)m的取值范圍是
(1,4)
(1,4)

(C) (幾何證明選講) 如圖,割線PBC經(jīng)過(guò)圓心O,OB=PB=1,OB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°到OD,連PD交圓O于點(diǎn)E,則PE=
3
7
7
3
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題(本題共2小題,任選一題作答,若做兩題,則按所做的第①題給分)
(1)已知不等式|x+1|-a<|x-2|的解集為(-∞,2),則a的值為
3
3

(2)曲線C1:ρ=2sinθ與曲線C2:ρ=2cosθ(ρ≥0,0≤θ<2π)的交點(diǎn)的極坐標(biāo)為
(0,0),(
2
,
π
4
(0,0),(
2
,
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

選做題(本題共2小題,任選一題作答,若做兩題,則按所做的第①題給分)
(1)已知不等式|x+1|-a<|x-2|的解集為(-∞,2),則a的值為_(kāi)_______
(2)曲線C1:ρ=2sinθ與曲線C2:ρ=2cosθ(ρ≥0,0≤θ<2π)的交點(diǎn)的極坐標(biāo)為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省高考數(shù)學(xué)仿真押題卷02(理科)(解析版) 題型:解答題

選做題(本題共2小題,任選一題作答,若做兩題,則按所做的第①題給分)
(1)已知不等式|x+1|-a<|x-2|的解集為(-∞,2),則a的值為   
(2)曲線C1:ρ=2sinθ與曲線C2:ρ=2cosθ(ρ≥0,0≤θ<2π)的交點(diǎn)的極坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案