已知橢圓C:的離心率為,其中左焦點(diǎn).
(Ⅰ)求出橢圓C的方程;
(Ⅱ) 若直線與曲線C交于不同的A、B兩點(diǎn),且線段AB的中點(diǎn)M在圓上,求m的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)M(3,1),直線與圓。
(1)求過點(diǎn)M的圓的切線方程;
(2)若直線與圓相切,求a的值;
(3)若直線與圓相交與A,B兩點(diǎn),且弦AB的長為,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C: 直線
(1)證明:不論取何實(shí)數(shù),直線與圓C恒相交;
(2)求直線被圓C所截得的弦長的最小值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,己知圓P在x軸上截得線段長為2,在軸上截得線段長為.
(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點(diǎn)到直線y=x的距離為,求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓,直線過定點(diǎn).
(1)求圓心的坐標(biāo)和圓的半徑;
(2)若與圓C相切,求的方程;
(3)若與圓C相交于P,Q兩點(diǎn),求三角形面積的最大值,并求此時的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知圓心在軸上、半徑為的圓位于軸右側(cè),且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
在直角坐標(biāo)系中,直線:(為參數(shù)),在極坐標(biāo)系中(以原點(diǎn)為極點(diǎn),以軸正半軸為極軸),圓C的方程:
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線交于,兩點(diǎn),點(diǎn)的坐標(biāo),求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)直線(極軸與x軸的非負(fù)半軸重合,且單位長度相同)。
(1)求圓心C到直線的距離; (2)若直線被圓C截的弦長為的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com