【題目】已知橢圓E: 過點(diǎn) ,離心率為 ,點(diǎn)F1 , F2分別為其左、右焦點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)P,Q,且 ?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請說明理由.
【答案】
(1)解:由題意得:e= ,a2﹣b2=c2,
且 + =1,
解得 ,a=2,b=1,
所以橢圓E方程為
(2)解:假設(shè)滿足條件的圓存在,其方程為:x2+y2=r2(0<r<1).
當(dāng)直線PQ的斜率存在時(shí),設(shè)直線方程為y=kx+m,
由 得(1+4k2)x2+8mkx+4m2﹣4=0,
令P(x1,y1),Q(x2,y2),
可得 , ,
∵ ,∴x1x2+y1y2=0
∴ ,
∴5m2=4k2+4,
由直線PQ與圓相切,則 ,
所以存在圓 .
當(dāng)直線PQ的斜率不存在時(shí),也適合 .
綜上所述,存在圓心在原點(diǎn)的圓 滿足題意.
由弦長公式可得:
= = ,
又 ,代入上式可得: ,
令4k2+1=t,即 ,
則 ,
當(dāng) 時(shí),即 時(shí), ,
當(dāng)直線l的斜率k不存在時(shí), ,
所以
【解析】(1)運(yùn)用橢圓的離心率公式和A在橢圓上,滿足橢圓方程,解方程即可得到所求橢圓的方程;(2)假設(shè)滿足條件的圓存在,其方程為:x2+y2=r2(0<r<1).當(dāng)直線PQ的斜率存在時(shí),設(shè)直線方程為y=kx+m,代入橢圓方程,運(yùn)用韋達(dá)定理,由 ,可得x1x2+y1y2=0,代入化簡整理,再由直線和圓相切的條件,即可得到滿足條件的圓存在;運(yùn)用弦長公式,化簡整理,由二次函數(shù)的最值的求法,即可得到所求最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(0,2)和圓C:x2+y2﹣8x+11=0.
(1)求過點(diǎn)P,點(diǎn)C和原點(diǎn)三點(diǎn)圓的方程;
(2)求以點(diǎn)P為圓心且與圓C外切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法:
①垂直于同一平面的所有向量一定共面;
②在△ABC中,已知 ,則∠A=60°;
③在△ABC中,sin2A=sin2B+sin2C+sinBsinC,則A=
④若a>0,b>0,a+b=2,則a2+b2≥2;
正確的序號有 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞某家具生產(chǎn)廠家根據(jù)市場調(diào)查分析,決定調(diào)整新產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按40個(gè)工時(shí)計(jì)算)生產(chǎn)書桌、書柜、電腦椅共120張,且書桌至少生產(chǎn)20張.已知生產(chǎn)這些家具每張所需工時(shí)和每張產(chǎn)值如表:
家具名稱 | 書桌 | 書柜 | 電腦椅 |
工 時(shí) | |||
產(chǎn)值(千元) | 4 | 3 | 2 |
問每周應(yīng)生產(chǎn)書桌、書柜、電腦椅各多少張,才能使產(chǎn)值最高?最高產(chǎn)值是多少?(以千元為單位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE∥BC,BC=2DE,CA⊥CB,CA⊥CD,CB⊥CD,F(xiàn)、G分別是AC、BC中點(diǎn).
(1)求證:平面DFG∥平面ABE;
(2)若AC=2BC=2CD=4,求二面角E﹣AB﹣C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E、F為CD上兩點(diǎn),且EF的長為定值,則下面四個(gè)值中不是定值的是( )
A.點(diǎn)P到平面QEF的距離
B.直線PQ與平面PEF所成的角
C.三棱錐P﹣QEF的體積
D.△QEF的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)F1(﹣1,0),F(xiàn)2(1,0),動點(diǎn)M到點(diǎn)F2的距離是 ,線段MF1的中垂線交MF2于點(diǎn)P.
(1)當(dāng)點(diǎn)M變化時(shí),求動點(diǎn)P的軌跡G的方程;
(2)設(shè)直線l:y=kx+m與軌跡G交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α、β,且α+β=π,求證:直線l經(jīng)過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:①f(x)+f(2﹣x)=0;②f(x﹣2)=f(﹣x),③在[﹣1,1]上表達(dá)式為f(x)= ,則函數(shù)f(x)與函數(shù)g(x)= 的圖象在區(qū)間[﹣3,3]上的交點(diǎn)個(gè)數(shù)為( )
A.5
B.6
C.7
D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com