在區(qū)間[0,10]上任取一個實數(shù)a,使得不等式2x2-ax+8≥0在(0,+∞)上恒成立的概率為( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5
考點:幾何概型
專題:應(yīng)用題,概率與統(tǒng)計
分析:不等式2x2-ax+8≥0在(0,+∞)上恒成立,則△=a2-64≤0,可得-8≤a≤8,求出區(qū)間[0,10]上構(gòu)成的區(qū)域長度,再求出在區(qū)間[0,10]上任取一個數(shù)構(gòu)成的區(qū)域長度,再求兩長度的比值.
解答: 解:∵不等式2x2-ax+8≥0在(0,+∞)上恒成立,
∴△=a2-64≤0,
∴-8≤a≤8,
∵在區(qū)間[0,10]上任取一個實數(shù)a,
∴使得不等式2x2-ax+8≥0在(0,+∞)上恒成立的概率為
8
10
=
4
5

故選:D.
點評:本題主要考查概率的建模和解模能力,本題是長度類型,思路是先求得試驗的全部構(gòu)成的長度和構(gòu)成事件的區(qū)域長度,再求比值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程2kx2-2x-3k=0的兩根一個大于1,一個小于1,則實數(shù)k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列給出的賦值語句中正確的是( 。
A、3=AB、x=-x
C、B=A=2D、x+y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<x<y<1,則( 。
A、3y<3x
B、(
1
4
)x<(
1
4
)y
C、logx3<logy3
D、x-
3
2
y-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體A-BCD中,△BCD是正三角形,側(cè)棱AB、AC、AD兩兩垂直且相等,設(shè)P為四面體A-BCD表面(含棱)上的一點,由點P到四個頂點的距離組成的集合記為M,如果集合M中有且只有2個元素,那么符合條件的點P有(  )
A、4個B、6個C、8個D、14個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=y+1上一定點A(-1,0)和兩動點P、Q,當(dāng)PA⊥PQ時,點Q的橫坐標(biāo)的取值范圍(  )
A、(-∞,-3]∪[1,+∞)
B、[1,+∞)
C、[-3,-1]
D、(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在拋物線y2=4x上恒有兩點關(guān)于直線l:y=kx+3則對稱,k的取值范圍是( 。
A、-1<k<0
B、0<k<1
C、-1≤k≤0
D、0≤k≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x、y滿足約束條件
2x-y≤2
x-y≥-1
x+y≥1
,則z=2x+3y的最大值為( 。
A、18B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,|BC|=2,
|AB|
|AC|
=
1
2
,求點A的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案