計(jì)算:3
-log
4
9
+log63•log278+log63.
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對(duì)數(shù)恒等式、換底公式、對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.
解答: 解:原式=3-log32+
lg3
lg6
3lg2
3lg3
+1-log62

=
1
2
+log62+1-log62
=
3
2
點(diǎn)評(píng):本題考查了對(duì)數(shù)恒等式、換底公式、對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x,x≤0
log2x,0<x≤2
2x-2,x>2
,則f(
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要從編號(hào)為01~50的50枚最新研制的某型號(hào)導(dǎo)彈中隨機(jī)抽出5枚來進(jìn)行發(fā)射試驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定,在選取的5枚導(dǎo)彈的編號(hào)可能是( 。
A、05,10,15,20,25
B、03,13,23,33,43
C、01,02,03,04,05
D、02,04,08,16,32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a3+a7-a10=0,a11-a4=4,記Sn=a1+a2+…+an,則S13=( 。
A、52B、56C、68D、78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2-2x,則f(a+2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在定義域上既是奇函數(shù)又存在零點(diǎn)的函數(shù)是(  )
A、y=cosx
B、y=
1
x
C、y=lgx
D、y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使函數(shù)f(x)=
x2-2x+3
+
1
3-|x|
有意義的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.若
1
2
an+1
an
 
≤2(n∈N*),則稱{an}是“緊密數(shù)列”
(1)若數(shù)列{an}的前n項(xiàng)和Sn=
1
4
(n2+3n)(n∈N*),證明:{an}是“緊密數(shù)列”;
(2)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若數(shù)列{an}與{Sn}都是“緊密數(shù)列”,求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

劉徽是我國古代最偉大的數(shù)學(xué)家之一,他的(  )是極限思想的開始,他計(jì)算體積的思想是積分學(xué)的萌芽.
A、割圓術(shù)B、勾股定理
C、大衍求一術(shù)D、輾轉(zhuǎn)相除法

查看答案和解析>>

同步練習(xí)冊(cè)答案