當(dāng)
,
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,兩焦點之間的距離為4.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓的右頂點作直線交拋物線
于A、B兩點,
(1)求證:OA⊥OB;
(2)設(shè)OA、OB分別與橢圓相交于點D、E,過原點O作直線DE的垂線OM,垂足為M,證明|OM|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知兩點
,
,曲線
上的動點
滿足
,直線
與曲線
交于另一點
.
(Ⅰ)求曲線
的方程;
(Ⅱ)設(shè)
,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在△
中,
邊長為
,
、
邊上的中線長之和等于
.若以
邊中點為原點,
邊所在直線為
軸建立直角坐標(biāo)系,則△
的重心
的軌跡方程為:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分16分)
如圖,橢圓
的右焦點為
,右準(zhǔn)線為
,
(1)求到點
和直線
的距離相等的點
的軌跡方程。
(2)過點
作直線交橢圓
于點
,又直線
交
于點
,若
,
求線段
的長;
(3)已知點
的坐標(biāo)為
,直線
交直線
于點
,且和橢圓
的一個交點為點
,是否存在實數(shù)
,使得
,若存在,求出實數(shù)
;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的右焦點與拋物線
的焦點相同,且
的離心率
,又
為橢圓的左右頂點,
其上任一點(異于
).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線
交直線
于點
,過
作直線
的垂線交
軸于點
,求
的坐標(biāo);
(Ⅲ)求點
在直線
上射影的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
A、
D分別為橢圓
E:
的左頂點與上頂點,橢圓的離心率
,
F1、
F2為橢圓的左、右焦點,點
P是線段
AD上的任一點,且
的最大值為1 .
(1)求橢圓
E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓
E恒有兩個交點
A,
B,且
OAOB(
O為坐標(biāo)原點),若存在,求出該圓的方程;若不存在,請說明理由;
(3)設(shè)直線
l與圓
相切于
A1,且
l與橢圓
E有且僅有一個公共點
B1,當(dāng)
R為何值時,|
A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如果函數(shù)y=|x|-1的圖象與方程
的曲線恰好有兩個不同的公共點,則實數(shù)
的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知A
1,A
2,B是橢圓
=1(a>b>0)的頂點(如圖),直線
l與橢圓交于異于頂點的P,Q兩點,且
l∥A
2B,若橢圓的離心率是
,且|A
2B|=
。
(1)求此橢圓的方程;
(2)設(shè)直線A
1P和直線BQ的傾斜角分別為α,β,試判斷α+β是否為定值?若是,求出此定值;若不是,說明理由。
查看答案和解析>>