17.如圖,A1,A2為橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的長軸的左、右端點(diǎn),O為坐標(biāo)原點(diǎn),S,Q,T為橢圓上不同于A1,A2的三點(diǎn),直線QA1,QA2,OS圍成一個平行四邊形OPQR,則|OS|2+|OT|2=( 。
A.5B.3+$\sqrt{5}$C.9D.14

分析 不妨取Q為上頂點(diǎn),則kOS=-$\frac{\sqrt{5}}{3}$,kOT=$\frac{\sqrt{5}}{3}$,OS的方程為y=-$\frac{\sqrt{5}}{3}$x,OT的方程為y=$\frac{\sqrt{5}}{3}$x,代入橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1可得S、T的坐標(biāo),即可求出|OS|2+|OT|2

解答 解:不妨取Q為上頂點(diǎn),則kOS=-$\frac{\sqrt{5}}{3}$,kOT=$\frac{\sqrt{5}}{3}$,
∴OS的方程為y=-$\frac{\sqrt{5}}{3}$x,OT的方程為y=$\frac{\sqrt{5}}{3}$x,
代入橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1可得S(-$\frac{3}{2}\sqrt{2}$,$\frac{\sqrt{10}}{2}$),T($\frac{3}{2}\sqrt{2}$,$\frac{\sqrt{10}}{2}$),
∴|OS|2+|OT|2=2×($\frac{9}{2}$+$\frac{5}{2}$)=14,
故選:D.

點(diǎn)評 本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查學(xué)生的計算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.?dāng)?shù)列{an}中,a1=a(a∈R),an+1=$\frac{2{a}_{n}^{2}}{4{a}_{n}-1}$(n∈N*
(Ⅰ)若對任意的n∈N*,都有an+1>$\frac{1}{2}$,求實(shí)數(shù)a的取值范圍;
(Ⅱ)記數(shù)列{an}的前n項(xiàng)和是Sn,若a=1,求證:Sn<$\frac{{n}^{2}}{4}$+1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,且對任意的正整數(shù)n,都有Sn+1=λSn+3n+1,其中常數(shù)λ>0.設(shè)bn=$\frac{a_n}{3^n}$(n∈N*)﹒
(1)若λ=3,求數(shù)列{bn}的通項(xiàng)公式;
(2)若λ≠1且λ≠3,設(shè)cn=an+$\frac{2}{λ-3}×{3^n}$(n∈N*),證明數(shù)列{cn}是等比數(shù)列;
(3)若對任意的正整數(shù)n,都有bn≤3,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知隨機(jī)變量ξ的分布列為
ξ123
Pp1p2p3
且E(ξ)=2,D(ξ)=$\frac{1}{2}$,則P(-1<ξ<2)=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|x2-x=0},B={x|lnx<0},則A∪B=( 。
A.(0,1]B.[0,1)C.(-∞,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在復(fù)平面內(nèi),點(diǎn)A(-2,1)對應(yīng)的復(fù)數(shù)z,則|z+1|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則f($\frac{2π}{3}$)=(  )
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓C:(x-2)2+(y-3)2=1,(0,3)且斜率為k的直線l與圓C有兩個不同的交點(diǎn)M,N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{84}{5}$,則實(shí)數(shù)k的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知非零向量$\overrightarrow{a}$=2$\overrightarrow$+2$\overrightarrow{c}$,|$\overrightarrow$|=|$\overrightarrow{c}$|=1,若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,則|$\overrightarrow{a}$|=2.

查看答案和解析>>

同步練習(xí)冊答案