【題目】如圖是一個由正四棱錐和正四棱柱構成的組合體,正四棱錐的側棱長為6,為正四棱錐高的4倍.當該組合體的體積最大時,點到正四棱柱外接球表面的最小距離是( )
A.B.C.D.
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,平面PAC⊥平面ABCD,且有AB∥DC,AC=CD=DAAB.
(1)證明:BC⊥PA;
(2)若PA=PC=AC,求平面PAD與平面PBC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率,是橢圓上一點.
(1)求橢圓的方程;
(2)若直線的斜率為,且直線交橢圓于、兩點,點關于原點的對稱點為,點是橢圓上一點,判斷直線與的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(,為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)若,求的極坐標方程;
(2)若與恰有4個公共點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是一個由正四棱錐和正四棱柱構成的組合體,正四棱錐的側棱長為6,為正四棱錐高的4倍.當該組合體的體積最大時,點到正四棱柱外接球表面的最小距離是( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓柱內有一個三棱錐,為圓柱的一條母線,,為下底面圓的直徑,.
(Ⅰ)在圓柱的上底面圓內是否存在一點,使得平面?證明你的結論.
(Ⅱ)設點為棱的中點,,求四棱錐體積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓錐曲線的參數方程為(為參數).
(1)以原點為極點,軸正半軸為極軸建立極坐標系,求圓錐曲線的極坐標方程;
(2)若直線l過曲線的焦點且傾斜角為60°,求直線l被圓錐曲線所截得的線段的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】瑞士數學家、物理學家歐拉發(fā)現任一凸多面體(即多面體內任意兩點的連線都被完全包含在該多面體中,直觀上講是指沒有凹陷或孔洞的多面體)的頂點數V.棱數E及面數F滿足等式,這個等式稱為歐拉多面體公式,被認為是數學領域最漂亮、簡潔的公式之一,現實生活中存在很多奇妙的幾何體,現代足球的外觀即取自一種不完全正多面體,它是由m塊黑色正五邊形面料和塊白色正六邊形面料構成的.則( )
A.20B.18C.14D.12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com