【題目】2018年的政府工作報告強調(diào),要樹立綠水青山就是金山銀山理念,以前所未有的決心和力度加強生態(tài)環(huán)境保護.某地科技園積極檢查督導園區(qū)內(nèi)企業(yè)的環(huán)保落實情況,并計劃采取激勵措施引導企業(yè)主動落實環(huán)保措施,下圖給出的是甲、乙兩企業(yè)2012年至2017年在環(huán)保方面投入金額(單位:萬元)的柱狀圖.
(Ⅰ)分別求出甲、乙兩企業(yè)這六年在環(huán)保方面投入金額的平均數(shù);(結(jié)果保留整數(shù))
(Ⅱ)園區(qū)管委會為盡快落實環(huán)保措施,計劃對企業(yè)進行一定的獎勵,提出了如下方案:若企業(yè)一年的環(huán)保投入金額不超過200萬元,則該年不獎勵;若企業(yè)一年的環(huán)保投入金額超過200萬元,不超過300萬元,則該年獎勵20萬元;若企業(yè)一年的環(huán)保投入金額超過300萬元,則該年獎勵50萬元.
(ⅰ)分別求出甲、乙兩企業(yè)這六年獲得的獎勵之和;
(ⅱ)現(xiàn)從甲企業(yè)這六年中任取兩年對其環(huán)保情況作進一步調(diào)查,求這兩年獲得的獎勵之和不低于70萬元的概率.
【答案】(1)見解析;(2) (。190萬元,110萬元; (ⅱ).
【解析】(Ⅰ)由柱狀圖可知,甲企業(yè)這六年在環(huán)保方面的投入金額分別為,
其平均數(shù)為(萬元);
乙企業(yè)這六年在環(huán)保方面的投入金額分別為,
其平均數(shù)為(萬元).
(Ⅱ)(。└鶕(jù)題意可知,企業(yè)每年所獲得的環(huán)保獎勵(單位:萬元)是關于該年環(huán)保投入(單位:萬元)的分段函數(shù),即;
所以甲企業(yè)這六年獲得的獎勵之和為:(萬元);
乙企業(yè)這六年獲得的獎勵之和為:(萬元).
(ⅱ)由(ⅰ)知甲企業(yè)這六年獲得的獎金數(shù)如下表:
年份 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 |
獎勵(單位:萬元) | 0 | 20 | 50 | 50 | 20 | 50 |
獎勵共分三個等級,其中獎勵0萬元的只有2012年,記為;
獎勵20萬元的有2013年,2016年,記為;
獎勵50萬元的有2014年,2015年和2017年,記為.
故從這六年中任意選取兩年,所有的情況為:
,,,,,,,,,
,,,,,,共15種.
其中獎勵之和不低于70萬元的取法為:,,,,,,,,,共9種.
故所求事件的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知點為橢圓上任意一點,直線與圓交于兩點,點為橢圓的左焦點.
(Ⅰ)求橢圓的離心率及左焦點的坐標;
(Ⅱ)求證:直線與橢圓相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的左,右頂點分別為,,長軸長為,且經(jīng)過點.
(1)求橢圓的標準方程;
(2)若為橢圓上異于,的任意一點,證明:直線,的斜率的乘積為定值;
(3)已知兩條互相垂直的直線,都經(jīng)過橢圓的右焦點,與橢圓交于,和,四點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統(tǒng)中最重要的CD4T淋巴細胞作為主要攻擊目標,使人體喪失免疫功能下表是近八年來我國艾滋病病毒感染人數(shù)統(tǒng)計表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代碼x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
感染者人數(shù)單位:萬人 | 85 |
請根據(jù)該統(tǒng)計表,畫出這八年我國艾滋病病毒感染人數(shù)的折線圖;
請用相關系數(shù)說明:能用線性回歸模型擬合y與x的關系;
建立y關于x的回歸方程系數(shù)精確到,預測2019年我國艾滋病病毒感染人數(shù).
參考數(shù)據(jù):;,,,
參考公式:相關系數(shù),
回歸方程中, ,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)交軸于兩點(不重合),交軸于點. 圓過三點.下列說法正確的是( )
① 圓心在直線上;
② 的取值范圍是;
③ 圓半徑的最小值為;
④ 存在定點,使得圓恒過點.
A. ①②③B. ①③④C. ②③D. ①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】太極圖被稱為“中華第一圖”.廣為人知的太極圖,其形狀如陰陽兩魚互抱在一起,因而被稱為“陰陽魚太極魚”.已知或,下列命題中:①在平面直角坐標系中表示的區(qū)域的面積為;②,使得;③,都有成立;④設點,則的取值范圍是.其中真命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)是( ).
①“若,則,中至少有一個不小于2”的逆命題是真命題;
②命題“設,若,則或”是一個真命題;
③命題,,則是的必要不充分條件;
④命題“,使得”的否定是:“,均有”.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為提高產(chǎn)品質(zhì)量,某企業(yè)質(zhì)量管理部門經(jīng)常不定期地抽查產(chǎn)品進行檢測,現(xiàn)在某條生產(chǎn)線上隨機抽取100個產(chǎn)品進行相關數(shù)據(jù)的對比,并對每個產(chǎn)品進行綜合評分(滿分100分),將每個產(chǎn)品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產(chǎn)品為一等品.
(1)求圖中的值,并求綜合評分的中位數(shù);
(2)用樣本估計總體,以頻率作為概率,按分層抽樣的思想,先在該條生產(chǎn)線中隨機抽取5個產(chǎn)品,再從這5個產(chǎn)品中隨機抽取2個產(chǎn)品記錄有關數(shù)據(jù),求這2個產(chǎn)品中恰有一個一等品的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:過點,且它的焦距是短軸長的倍.
(1)求橢圓的方程.
(2)若,是橢圓上的兩個動點(,兩點不關于軸對稱),為坐標原點,,的斜率分別為,,問是否存在非零常數(shù),使當時,的面積為定值?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com