如圖所示,已知橢圓方程為,A為橢圓的左頂點,B、C在橢圓上,若四邊形OABC為平行四邊形,且,則橢圓的離心率等于(     )

A.    B.    C.   D.   

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,A為橢圓的左頂點,B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=45°,則橢圓的離心率等于(  )
A、
2
2
B、
3
3
C、
6
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓C的離心率為
3
2
,A、B、F分別為橢圓的右頂點、上頂點、右焦點,且S△ABF=1-
3
2

(1)求橢圓C的方程;
(2)已知直線l:y=kx+m被圓O:x2+y2=4所截弦長為2
3
,若直線l與橢圓C交于M、N兩點.求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓C:x2+
y2
a2
=1(a>1)的離心率為e,點F為其下焦點,點A為其上頂點,過F的直線l:y=mx-c(其中c=
a2-1
與橢圓C相交于P,Q兩點,且滿足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)試用a表示m2;
(2)求e的最大值;
(3)若e∈(
1
3
,
1
2
),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示:已知橢圓方程為
y2
a2
+
x2
b2
=1(a>b>0)
,A,B是橢圓與斜軸的兩個交點,F(xiàn)是橢圓的焦點,且△ABF為直角三角形.
(1)求橢圓離心率;
(2)若橢圓的短軸長為2,過F的直線與橢圓相交的弦長為
3
2
2
,試求弦所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案