【題目】已知橢圓C:1(a>b>0),A(﹣a,0),B(0,﹣b),P為C上位于第一象限的動點,PA交y軸于點E,PB交x軸于點F.
(1)探究四邊形AEFB的面積是否為定值,說明理由;
(2)當△PEF的面積達到最大值時,求點P的坐標.
【答案】(1)面積為定值,詳見解析(2)
【解析】
(1)設(shè),寫出直線方程求出坐標,計算面積可得定值;
(2)求出到直線的距離,由(1)知面積最大時,面積最大,從而只要最大即可,,由在橢圓上,利用基本不等式可得的最大值,從而得出結(jié)論.
(1)設(shè)P(x0,y0),四邊形AEFB的面積為定值,證明如下:
則PA的方程為,可得,故,
同理可得,,
從而四邊形AEFB的面積為ab,
所以四邊形AEFB的面積為ab.
(2)由題設(shè)知直線AB:bx+ay+ab=0,
點P到AB的距離為d,則,
由(1)可知,當且僅當△ABP的面積最大時,△PEF的面積最大,所以當d取最大值時,△PEF的面積最大,
由于P在C上,故,可得,
所以,
當且僅當,即,時等號成立,
所以點P的坐標為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學(xué)利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列五個命題中真命題的個數(shù)是( )
(1)若是奇函數(shù),則的圖像關(guān)于軸對稱;
(2)若,則;
(3)若函數(shù)對任意滿足,則8是函數(shù)的一個周期;
(4)命題“存在,”的否定是“任意,”;
(5)已知函數(shù),若,則.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了比較注射,兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗,將這200只家兔隨機地分成兩組,每組100只,其中一組注射藥物,另一組注射藥物.下表1和表2分別是注射藥物和藥物的試驗結(jié)果.(皰疹面積單位:)
表1:注射藥物后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 | ||||
頻數(shù) | 30 | 40 | 20 | 10 |
表2:注射藥物后皮膚皰疹面積的頻數(shù)分布表
皰疹面積 | |||||
頻數(shù) | 10 | 25 | 20 | 30 | 15 |
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
(1)完成下面頻率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大。ú槐厮愠鲋形粩(shù));
(2)完成下面列聯(lián)表,并回答能否有99.9%的把握認為“注射藥物后的皰疹面積與注射藥物后的皰疹面積有差異”.
表3:
皰疹面積小于 | 皰疹面積不小于 | 合計 | |
注射藥物 | |||
注射藥物 | |||
合計 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用 (基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費是與上一年度車輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強險第二年價格計算公式具體如下:交強險最終保費基準保費(浮動比率).發(fā)生交通事故的次數(shù)越多,出險次數(shù)的就越多,費率也就越髙,具體浮動情況如下表:
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車一年內(nèi)的出險次數(shù),得到下面的柱狀圖:
已知小明家里有一輛該品牌普通6座以下私家車且需要續(xù)保,續(xù)保費用為元.
(1)記為事件“”,求的估計值;
(2)求的平均估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線與直線垂直.
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)求證:當時, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,為等邊三角形,邊長為2,為等腰直角三角形,,,,平面平面ABCD.
(1)證明:平面PAD;
(2)求平面PAD與平面PBC所成銳二面角的余弦值;
(3)棱PD上是否存在一點E,使得平面PBC?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com