【題目】如圖1,在直角梯形ABCP中,CP∥AB,CP⊥CB,AB=BC= CP=2,D是CP的中點,將△PAD沿AD折起,使得PD⊥CD.

(Ⅰ)若E是PC的中點,求證:AP∥平面BDE;
(Ⅱ)求證:平面PCD⊥平面ABCD;
(Ⅲ)求二面角A﹣PB﹣C的大。

【答案】證明:(Ⅰ)連接AC交BD于點O,連接OE, 在正方形ABCD中,O為AC的中點,又因為E為PC的中點,
所以O(shè)E為△PAC的中位線,
所以O(shè)E∥AP,
又因為OE平面BDE,AP平面BDE,
所以AP∥平面BDE.
(Ⅱ)由已知可得AD⊥PD,AD⊥CD,
又因為PD∩CD=D,PD,CD平面PCD,
所以AD⊥平面PCD,
又因為AD平面ABCD,
所以平面PCD⊥平面ABCD.
解:(Ⅲ)由(Ⅱ)知AD⊥平面PCD,所以AD⊥PD,又因為PD⊥CD,且AD∩CD=D,
所以PD⊥平面ABCD,
所以以D為坐標(biāo)原點,DA,DC,DP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,
則P(0,0,2),A(2,0,0),B(2,2,0),C(0,2,0),
所以 ,
設(shè)平面APB的一個法向量為 ,
所以
令a=1,則c=1,從而 ,
同理可求得平面PBC的一個法向量為 ,
設(shè)二面角A﹣PB﹣C的大小為θ,易知 ,
所以 ,所以 ,
所以二面角A﹣PB﹣C的大小為

【解析】(Ⅰ)連接AC交BD于點O,連接OE,推導(dǎo)出OE∥AP,由此能證明AP∥平面BDE.(Ⅱ)推導(dǎo)出AD⊥PD,AD⊥CD,從而AD⊥平面PCD,由此能證明平面PCD⊥平面ABCD.(Ⅲ)以D為坐標(biāo)原點,DA,DC,DP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣PB﹣C的大。
【考點精析】利用直線與平面平行的判定和平面與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人玩一種游戲,游戲規(guī)則如下:先將籌碼放在如下表的正中間D處,投擲一枚質(zhì)地均勻的硬幣,若正面朝上,籌碼向右移動一格;若反面朝上,籌碼向左移動一格.

A

B

C

D

E

F

G

30

5

10

10

5

20

30


(1)將硬幣連續(xù)投擲三次,現(xiàn)約定:若籌碼停在A或B或C或D處,則甲贏;否則,乙贏.問該約定對乙公平嗎?請說明理由.
(2)設(shè)甲、乙兩人各有100個積分,籌碼停在D處,現(xiàn)約定: ①投擲一次硬幣,甲付給乙10個積分;乙付給甲的積分?jǐn)?shù)是,按照上述游戲規(guī)則籌碼所在表中字母A﹣G下方所對應(yīng)的數(shù)目;
②每次游戲籌碼都連續(xù)走三步,之后重新回到起始位置D處.
你認(rèn)為該規(guī)定對甲、乙二人哪一個有利,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b分別是△ABC內(nèi)角A,B的對邊,且bsin2A= acosAsinB,函數(shù)f(x)=sinAcos2x﹣sin2 sin 2x,x∈[0, ].
(Ⅰ)求A;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當(dāng)T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SCD≥2SD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E:x2+3y2=m2(m>0)的左頂點是A,左焦點為F,上頂點為B.
(1)當(dāng)△AFB的面積為 時,求m的值;
(2)若直線l交橢圓E于M,N兩點(不同于A),以線段MN為直徑的圓過A點,試探究直線l是否過定點,若存在定點,求出這個定點的坐標(biāo),若不存在定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:x0∈(0,+∞),x0+ >3;命題q:x∈(2,+∞),x2>2x , 則下列命題為真的是(
A.p∧(¬q)
B.(¬p)∧q
C.p∧q
D.(¬p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,a∈R.
(1)若a≠0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若a=0,x1<x<x2<2,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足an+1=an2﹣an+1(n∈N*),Sn為{an}的前n項和.證明:對任意n∈N* ,
(I)當(dāng)0≤a1≤1時,0≤an≤1;
(II)當(dāng)a1>1時,an>(a1﹣1)a1n1
(III)當(dāng)a1= 時,n﹣ <Sn<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線y=x與函數(shù) 的圖象恰有三個公共點,則實數(shù)m的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案