【題目】為了檢驗學(xué)習(xí)情況,某培訓(xùn)機(jī)構(gòu)于近期舉辦一場競賽活動,分別從甲、乙兩班各抽取10名學(xué)員的成績進(jìn)行統(tǒng)計分析,其成績的莖葉圖如圖所示(單位:分),假設(shè)成績不低于90分者命名為“優(yōu)秀學(xué)員”.

(1)分別求甲、乙兩班學(xué)員成績的平均分(結(jié)果保留一位小數(shù));

(2)從甲班4名優(yōu)秀學(xué)員中抽取兩人,從乙班2名80分以下的學(xué)員中抽取一人,求三人平均分不低于90分的概率.

【答案】(1)見解析(2)

【解析】試題分析:(1)由平均式可算出平均數(shù)。(2)由枚舉法可知總共12種情況,滿足10種,得概率。

試題解析:(1)甲組的平均分為88.1;乙組的平均分為89.0

(2)抽取情況為:

92,94,78; 92,94,79; 92,106,78; 92,106,79; 92,108,78;

92,108,79; 94,106,78; 94,106,79; 94,108,78;

94,108,79; 106,108,78; 106,108,79.

總共有12種.

這12種平均分不低于90分的情況有10種.

所以三人平均分不低于90分的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了體現(xiàn)國家“民生工程”,某市政府為保障居民住房,現(xiàn)提供一批經(jīng)濟(jì)適用房.現(xiàn)有條件相同的甲、已、丙、丁四套住房供A、B、C三人自主申請,他們的申請是相互獨(dú)立的.
(1)求A、B兩人都申請甲套住房的概率;
(2)求A、B兩人不申請同一套住房的概率;
(3)設(shè)3名參加選房的人員中選擇甲套住房的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn,且滿足a1=2,anan+1=2(Sn+1) ().

(1)求數(shù)列{an}的通項公式;

(2)若數(shù)列{bn}滿足b1=1,(),求{bn}的前n項和Tn

(3)若數(shù)列{cn}滿足,(,),試問是否存在正整數(shù)pq(其中1 < p < q),使c1cp,cq成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組(pq);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖,它的輸出結(jié)果是(

A.﹣1
B.0
C.1
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3 ax2 , 且關(guān)于x的方程f(x)+a=0有三個不等的實數(shù)根,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣ )∪(0,
B.(﹣ ,0)∪( ,+∞)
C.(﹣
D.(﹣∞,﹣ )∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為測評班級學(xué)生對任課教師的滿意度,采用“100分制”打分的方式來計分.現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個位數(shù)字為葉):
規(guī)定若滿意度不低于98分,測評價該教師為“優(yōu)秀”.

(1)求從這10人中隨機(jī)選取3人,至多有1人評價該教師是“優(yōu)秀”的概率;
記ξ表示抽到評價該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.
(2)以這10人的樣本數(shù)據(jù)來估計整個班級的總體數(shù)據(jù),若從該班任選3人,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中, =
(1)求角A;
(2)若a=2,且sinB+cos(C+2B﹣ )取得最大值時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x|x﹣a|,若對于任意的x1 , x2∈[﹣2,+∞),x1≠x2 , 不等式 >0恒成立,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+)(A,ω,為常數(shù),且A>0,ω>0,0<<π)的部分圖象如圖所示.

(1)求A,ω,的值;
(2)當(dāng)x∈[0, ]時,求f(x)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案