【題目】已知函數(shù),若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則的取值范圍為( 。
A. (﹣1,+∞)B. (﹣1,1]C. (﹣∞,1)D. [﹣1,1)
【答案】B
【解析】
由方程f(x)=a,得到x1,x2關于x=﹣1對稱,且x3x4=1;化簡,利用數(shù)形結合進行求解即可.
作函數(shù)f(x)的圖象如圖所示,∵方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,
∴x1,x2關于x=﹣1對稱,即x1+x2=﹣2,0<x3<1<x4,則|log2x3|=|log2x4|,
即﹣log2x3=log2x4,則log2x3+log2x4=0,即log2x3x4=0,則x3x4=1;
當|log2x|=1得x=2或,則1<x4≤2;≤x3<1;
故;
則函數(shù)y=﹣2x3+,在≤x3<1上為減函數(shù),則故當x3=取得y取最大值y=1,
當x3=1時,函數(shù)值y=﹣1.即函數(shù)取值范圍是(﹣1,1].
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中是實數(shù)。設, 為該函數(shù)圖象上的兩點,且,若函數(shù)的圖象在點處的切線重合,則的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}.
(Ⅰ)求A∩B,(UA)∪(UB);
(Ⅱ)設集合C={x|m+1<x<2m-1},若B∩C=C,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、是異面直線,給出下列結論:
①一定存在平面,使直線平面,直線平面;
②一定存在平面,使直線平面,直線平面;
③一定存在無數(shù)個平面,使直線與平面交于一個定點,且直線平面.
則所有正確結論的序號為( )
A.①②B.②C.②③D.③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的方程為,若在軸上的截距為,且.
(1)求直線和的交點坐標;
(2)已知直線經過與的交點,且在軸上截距是在軸上的截距的2倍,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù),函數(shù)(x∈R).
(1) 求函數(shù)的單調區(qū)間;
(2) 若函數(shù)有極大值32,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)單調性并證明;
(3)對任意不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學屆的震動。在1859年的時候,德國數(shù)學家黎曼向科學院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結論。若根據歐拉得出的結論,估計1000以內的素數(shù)的個數(shù)為_________(素數(shù)即質數(shù),,計算結果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com