【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,且直線與圓相切.

1)求橢圓的方程;

2)已知過(guò)橢圓的左頂點(diǎn)的兩條直線,分別交橢圓,兩點(diǎn),且,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

【答案】1;(2)證明見(jiàn)解析,.

【解析】

1)根據(jù)橢圓的兩個(gè)焦點(diǎn),與短軸的一個(gè)端點(diǎn)構(gòu)成一個(gè)等邊三角形,以及直線與圓相切.,可得求解即可.

2)由題意知,設(shè):,與橢圓方程聯(lián)立,分別求得點(diǎn)MN的坐標(biāo),寫(xiě)出MN的直線方程化簡(jiǎn)即可.,

1)由題意可得:,

,解得,

,

∴橢圓的方程為:

2)由題意知,設(shè):,.

消去得:,

解得:(舍去),

,同理可得:.

i:當(dāng)時(shí),直線斜率存在,

,

所以

,

∴直線過(guò)定點(diǎn).

ii:當(dāng)時(shí),直線斜率不存在,

直線方程為:,也過(guò)定點(diǎn),

綜上所述:直線過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新冠肺炎疫情造成醫(yī)用防護(hù)服緊缺,當(dāng)?shù)卣疀Q定為防護(hù)服生產(chǎn)企業(yè)A公司擴(kuò)大生產(chǎn)提供(萬(wàn)元)的專(zhuān)項(xiàng)補(bǔ)貼,并以每套80元的價(jià)格收購(gòu)其生產(chǎn)的全部防護(hù)服.A公司在收到政府x(萬(wàn)元)補(bǔ)貼后,防護(hù)服產(chǎn)量將增加到(萬(wàn)件),其中k為工廠工人的復(fù)工率,A公司生產(chǎn)t萬(wàn)件防護(hù)服還需投入成本(萬(wàn)元).

1)將A公司生產(chǎn)防護(hù)服的利潤(rùn)y(萬(wàn)元)表示為補(bǔ)貼x(萬(wàn)元)的函數(shù);

2)對(duì)任意的(萬(wàn)元),當(dāng)復(fù)工率k達(dá)到多少時(shí),A公司才能不產(chǎn)生虧損?(精確到0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的最大值;

2)令,討論函數(shù)的單調(diào)區(qū)間;

3)若,正實(shí)數(shù)滿(mǎn)足,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上.這條直線被后人稱(chēng)為三角形的“歐拉線”.在平面直角坐標(biāo)系中作,中,,點(diǎn),點(diǎn),且其“歐拉線”與圓相切,則該圓的直徑為(

A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】楊輝,字謙光,南宋時(shí)期杭州人.在他1261年所著的《詳解九章算法》一書(shū)中,輯錄了如圖所示的三角形數(shù)表,稱(chēng)之為開(kāi)方作法本源圖,并說(shuō)明此表引自11世紀(jì)中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫(huà)了古法七乘方圖”.故此,楊輝三角又被稱(chēng)為賈憲三角”.楊輝三角是一個(gè)由數(shù)字排列成的三角形數(shù)表,一般形式如下:

基于上述規(guī)律,可以推測(cè),當(dāng)時(shí),從左往右第22個(gè)數(shù)為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)更新技術(shù)培育了一批新型的盆栽果樹(shù),這種盆栽果樹(shù)將一改陸地栽植果樹(shù)只在秋季結(jié)果的特性,能夠一年四季都有花、四季都結(jié)果.現(xiàn)為了了解果樹(shù)的結(jié)果情況,從該批果樹(shù)中隨機(jī)抽取了容量為120的樣本,測(cè)量這些果樹(shù)的高度(單位:厘米),經(jīng)統(tǒng)計(jì)將所有數(shù)據(jù)分組后得到如圖所示的頻率分布直方圖.

1)求

2)求抽取的盆栽果樹(shù)的平均高度;

3)已知所抽取的樣本來(lái)自兩個(gè)實(shí)驗(yàn)基地,規(guī)定高度不低于40厘米的果樹(shù)為優(yōu)品盆栽,請(qǐng)將圖中列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為優(yōu)品盆栽兩個(gè)實(shí)驗(yàn)基地有關(guān)?

優(yōu)品

非優(yōu)品

合計(jì)

基地

60

基地

20

合計(jì)

附:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是,假設(shè)兩人射擊是否擊中目標(biāo)相互沒(méi)有影響,每人每次射擊是否擊中目標(biāo)相互也沒(méi)有影響.

1)求甲、乙兩人各射擊一次均擊中目標(biāo)的概率;

2)若乙在射擊中出現(xiàn)連續(xù)次未擊中目標(biāo)則會(huì)被終止射擊,求乙恰好射擊次后被終止射擊的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市教育與環(huán)保部門(mén)聯(lián)合組織該市中學(xué)參加市中學(xué)生環(huán)保知識(shí)團(tuán)體競(jìng)賽,根據(jù)比賽規(guī)則,某中學(xué)選拔出8名同學(xué)組成參賽隊(duì),其中初中學(xué)部選出的3名同學(xué)有2名女生;高中學(xué)部選出的5名同學(xué)有3名女生,競(jìng)賽組委會(huì)將從這8名同學(xué)中隨機(jī)選出4人參加比賽.

)設(shè)選出的4人中恰有2名女生,而且這2名女生來(lái)自同一個(gè)學(xué)部為事件,求事件的概率

)設(shè)為選出的4人中女生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷(xiāo)售量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響.對(duì)近六年的年宣傳費(fèi)和年銷(xiāo)售量)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

年宣傳費(fèi)(萬(wàn)元)

年銷(xiāo)售量(噸)

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷(xiāo)售量(噸)之間近似滿(mǎn)足關(guān)系式).對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為若想在年達(dá)到年利潤(rùn)最大,請(qǐng)預(yù)測(cè)年的宣傳費(fèi)用是多少萬(wàn)元?

附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

同步練習(xí)冊(cè)答案