的焦點作直線交拋物線與兩點,若的長分別是,則                                           (    )
A.B.C.D.

C

考慮特殊位置PQ⊥OP時,,所以,故選C。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知向量,動點到定直線的距離等于,并且滿足,其中為坐標原點,為非負實數(shù).
(1)求動點的軌跡方程;
(2)若將曲線向左平移一個單位,得曲線,試判斷曲線為何種類型;
(3)若(2)中曲線為圓錐曲線,其離心率滿足,當是曲線的兩個焦點時,則圓錐曲線上恒存在點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在以點O為圓心,AB為直徑的半圓中,D為半圓弧的中點, P為半圓弧上一點,且AB=4,∠POB=30°,雙曲線C以A,B為焦點且經(jīng)過點P.
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼,求雙曲線C的方程;
(Ⅱ)設過點D的直線l與雙曲線C相交于不同兩點E、F,
若△OEF的面積不小于2,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,過定點作直線與拋物線)相交于兩點.
(I)若點是點關于坐標原點的對稱點,求面積的最小值;
(II)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,動點滿足.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)過點作直線與曲線交于兩點,若,求直線的方程;
(Ⅲ)設為曲線在第一象限內的一點,曲線處的切線與軸分別交于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,動圓與定圓B:x2+y2-4y-32=0內切且過定圓內的一個定點A(0,-2),求動圓圓心P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線y2=4x,過點P(4,0)的直線與拋物線相交于A(x1,y1)、B(x2,y2)兩點,則y12+y22的最小值是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線的焦點與橢圓的左焦點重合,則p的值為
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓與雙曲線有相同的焦點,則橢圓的離心率為
A.B.C.D.

查看答案和解析>>

同步練習冊答案