【題目】如圖,在邊長為的正方形中,線段BC的端點分別在邊、上滑動,且,現(xiàn)將,分別沿AB,AC折起使點重合,重合后記為點,得到三被錐.現(xiàn)有以下結(jié)論:
①平面;
②當分別為、的中點時,三棱錐的外接球的表面積為;
③的取值范圍為;
④三棱錐體積的最大值為.
則正確的結(jié)論的個數(shù)為( )
A.B.C.D.
【答案】C
【解析】
根據(jù)題意得,折疊成的三棱錐P﹣ABC的三條側(cè)棱滿足PAPB、PAPC,由線面垂直的判斷定理得①正確;三棱錐P﹣ABC的外接球的直徑等于以PA、PB、PC為長、寬、高的長方體的對角線長,由此結(jié)合AP=2、BP=CP=1,得外接球的半徑R=,由此得三棱錐P﹣ABC的外接球的體積,故②正確;由題意得,,,在中,由邊長關(guān)系得,故③正確;由等體積轉(zhuǎn)化計算即可,故④錯誤.
由題意得,折疊成的三棱錐P﹣ABC的三條側(cè)棱滿足PAPB、PAPC,
在①中,由PAPB,PAPC,且PB PC,所以平面成立,故①正確;
在②中,當分別為、的中點時,三棱錐P﹣ABC的三條側(cè)棱兩兩垂直,三棱錐P﹣ABC的外接球直徑等于以PA、PB、PC為長、寬、高的長方體的對角線長,結(jié)合AP=2、BP=CP=,
得外接球的半徑R=,所以外接球的表面積為,故②正確;
在③中,正方形的邊長為2,所以,,,在中,由邊長關(guān)系得+,解得,故③正確;
在④中,正方形的邊長為2,且,則,
所以在上遞減,無最大值,故④錯誤.
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】若橢圓的焦點在x軸上,離心率為,依次連接的四個頂點所得四邊形的面積為40.
(1)試求的標準方程;
(2)若曲線M上任意一點到的右焦點的距離與它到直線的距離相等,直線經(jīng)過的下頂點和右頂點,,直線與曲線M相交于點P、Q(點P在第一象限內(nèi),點Q在第四象限內(nèi)),設(shè)的下頂點是B,上頂點是D,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的值域為A,.
(1)當的為偶函數(shù)時,求的值;
(2) 當時, 在A上是單調(diào)遞增函數(shù),求的取值范圍;
(3)當時,(其中),若,且函數(shù)的圖象關(guān)于點對稱,在處取 得最小值,試探討應該滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進行研究該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2).
根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù)(顆)和溫差具有線性相關(guān)關(guān)系.
附:,
(1)求綠豆種子出芽數(shù)(顆)關(guān)于溫差的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為11℃,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為,過點的直線(不與軸重合)與橢圓相交于,兩點,直線:與軸相交于點,過點作,垂足為D.
(1)求四邊形(為坐標原點)面積的取值范圍;
(2)證明直線過定點,并求出點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某經(jīng)銷商從某養(yǎng)殖場購進某品種河蟹,并隨機抽取了 100只進行統(tǒng)計,按重量分類統(tǒng)計,得到頻率分布直方圖如下:
(1)記事件為“從這批河蟹中任取一只,重量不超過120克”,估計;
(2)試估計這批河蟹的平均重量;
(3)該經(jīng)銷商按有關(guān)規(guī)定將該品種河蟹分三個等級,并制定出銷售單價如下:
等級 | 特級 | 一級 | 二級 |
重量 | |||
單價(元/只) | 40 | 20 | 10 |
試估算該經(jīng)銷商以每千克至多花多少元(取整)收購這批河蟹,才能獲利?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)若數(shù)列{an}是的遞增等差數(shù)列,其中的a3=5,且a1,a2,a5成等比數(shù)列,
(1)求{an}的通項公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前項的和Tn.
(3)是否存在自然數(shù)m,使得 <Tn<對一切n∈N*恒成立?若存在,求出m的值;
若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com