【題目】在樣本的頻率分布直方圖中共有個(gè)小矩形,若中間一個(gè)小矩形的面積等于其余個(gè)小矩形面積的,且樣本容量為3200,則中間一組的頻數(shù)為__________.

【答案】400.

【解析】

根據(jù)中間一個(gè)小矩形的面積等于其余(n1)個(gè)小矩形面積之和的,設(shè)出中間一個(gè)小矩形的面積是x,則其余(n1)個(gè)小矩形面積之和為7x,得到中間一個(gè)的頻率的值,用概率乘以樣本容量得到結(jié)果.

∵在樣本的頻率分布直方圖中共有n個(gè)小矩形,

中間一個(gè)小矩形的面積等于其余(n1)個(gè)小矩形面積之和的,

設(shè)中間一個(gè)小矩形的面積是x,則其余(n1)個(gè)小矩形面積之和為7x,

x+7x1,

x

∵樣本容量為3200,

∴中間一組的頻數(shù)是3200400,

故答案為:400

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xOy取相同的長度單位,建立極坐標(biāo)系.設(shè)曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的極坐標(biāo)方程為ρcos=2.

(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;

(2)求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{}的前項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*).

(1)若數(shù)列滿足:,求數(shù)列的通項(xiàng)公式;

(2)令,求數(shù)列{}的前n項(xiàng)和Tn.

(3) ,(n為正整數(shù)),問是否存在非零整數(shù),使得對任意正整數(shù)n,都有若存在,求的值,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用電,某市實(shí)行“階梯式”電價(jià),將每戶居民的月用電量分為二檔,月用電量不超過200度的部分按0.5元/度收費(fèi),超過200度的部分按0.8元/度收費(fèi).某小區(qū)共有居民1000戶,為了解居民的用電情況,通過抽樣,獲得了今年7月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)試估計(jì)該小區(qū)今年7月份用電量用不超過260元的戶數(shù);

(3)估計(jì)7月份該市居民用戶的平均用電費(fèi)用(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線的切線經(jīng)過點(diǎn),求的方程;

(2)若方程有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足,則下列說法正確的是( )

A. 數(shù)列的前項(xiàng)和為 B. 數(shù)列的通項(xiàng)公式為

C. 數(shù)列為遞增數(shù)列 D. 數(shù)列是遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過研究學(xué)生的學(xué)習(xí)行為,專家發(fā)現(xiàn),學(xué)生的注意力著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散,設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律\left(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:

(1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?

(2)講課開始后5分鐘與講課開始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?

(3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,教師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過點(diǎn)的直線交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)報(bào)道,某公司的33名職工的月工資(以元為單位)如下:

職務(wù)

董事長

副董事長

董事

總經(jīng)理

經(jīng)理

管理員

職員

人數(shù)

1

1

2

1

5

3

20

工資

5500

5500

3500

3000

2500

2000

1500

1)求該公司職工月工資的平均數(shù)(精確到元);

2)假設(shè)副董事長的工資從5000元提升到20000元,董事長的工資從5500元提升到30000元,那么新的平均數(shù)又是什么?(精確到元)

3)你認(rèn)為工資的平均數(shù)能反映這個(gè)公司員工的工資水平嗎?結(jié)合此問題談一談你的看法.

查看答案和解析>>

同步練習(xí)冊答案