已知橢圓+y2=1的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.
(1)當直線AM的斜率為1時,求點M的坐標;
(2)當直線AM的斜率變化時,直線MN是否過x軸上的一定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第5課時練習卷(解析版) 題型:解答題
已知圓C:x2+(y-3)2=4,一動直線l過A(-1,0)與圓C相交于P、Q兩點,
M是PQ中點,l與直線m:x+3y+6=0相交于N.
(1)求證:當l與m垂直時,l必過圓心C;
(2)當PQ=2時,求直線l的方程;
(3)探索·是否與直線l的傾斜角有關(guān)?若無關(guān),請求出其值;若有關(guān),請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題
設(shè)a∈R,則“a=1”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0平行”的________條件.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題
已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1.又l與l2交于P點,設(shè)l與橢圓C的兩個交點由上至下依次為A、B(如圖).
(1)當l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當=λ,求λ的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題
已知拋物線y2=2px(p≠0)及定點A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點.設(shè)直線AM、BM與拋物線的另一個交點分別為M1、M2,當M變動時,直線M1M2恒過一個定點,此定點坐標為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題
如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題
已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點M.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領(lǐng)+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題
已知雙曲線方程是x2-=1,過定點P(2,1)作直線交雙曲線于P1、P2兩點,并使P(2,1)為P1P2的中點,則此直線方程是____________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應(yīng)性訓練文數(shù)學卷(解析版) 題型:選擇題
等差數(shù)列的前n項和為,若,則等于( )
A.52 B.54 C.56 D.58
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com