分析 設(shè)z=a+bi(a,b∈R),代入$z•\overline z-2zi=1+2i$,展開后由復(fù)數(shù)相等的條件列式求得a,b的值,則z可求.
解答 解:設(shè)z=a+bi(a,b∈R),則(a+bi)(a-bi)-2i(a+bi)=1+2i,
即a2+b2+2b-2ai=1+2i.
由$\left\{\begin{array}{l}{-2a=2}\\{{a}^{2}+^{2}+2b=1}\end{array}\right.$,
得$\left\{\begin{array}{l}{a_1}=-1\\{b_1}=0\end{array}\right.$或$\left\{\begin{array}{l}{a_2}=-1\\{b_2}=-2\end{array}\right.$,
∴z=-1或z=-1-2i.
點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)相等的條件,是基礎(chǔ)的計算題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $-\frac{4}{5}$ | C. | 2 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=cosx | B. | y=|sinx| | C. | y=cos2x | D. | y=sin2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com