已知點(diǎn)A(1,0),B(0,1),C(2sinθ,cosθ).
(1)若|
AC
|=|
BC
|
,求tanθ的值;
(2)若(
OA
+2
OB
)•
OC
=1
,其中O為坐標(biāo)原點(diǎn),求sin2θ的值
分析:(1)表示出
AC
BC
向量
,然后根據(jù)|
AC
|=|
BC
|
,可求得tanθ的值.
(2)表示出
OA
+2
OB
  和  
OC
,然后計(jì)算數(shù)量積,再求sin2θ的值.
解答:解:(1)∵A(1,0),B(0,1),C(2sinθ,cosθ)
AC
=(2sinθ-1,cosθ),
BC
=(2sinθ,cosθ-1)

|
AC
|=|
BC
|∴
(2sinθ-1)2+cos2θ
=
4sin2θ+(cosθ-1)2

2sinθ=cosθ∵cosθ≠0∴tanθ=
1
2
(6分)
(2)∵
OA
=(1,0),
OB
=(0,1),
OC
=(2sinθ,cosθ)

OA
+2
OB
=(1,2)∵(
OA
+2
OB
)•
OC
=1

2sinθ+2cosθ=1∴sinθ+cosθ=
1
2

(sinθ+cosθ)2=
1
4
∴sin2θ=-
3
4
(12分)
點(diǎn)評(píng):本題考查平面向量的數(shù)量積,向量的模,同角三角函數(shù)的基本關(guān)系式,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動(dòng)點(diǎn),連接BC并延長(zhǎng)至D,使得|CD|=|BC|,求AC與OD的交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,0),B(0,2),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿(mǎn)足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標(biāo)原點(diǎn),其中an、bn分別為等差數(shù)列和等比數(shù)列,若P1是線(xiàn)段AB的中點(diǎn),設(shè)等差數(shù)列公差為d,等比數(shù)列公比為q,當(dāng)d與q滿(mǎn)足條件
 
時(shí),點(diǎn)P1,P2,P3,…,Pn,…共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,0),B(1,0),M是平面上的一動(dòng)點(diǎn),過(guò)M作直線(xiàn)l:x=4的垂線(xiàn),垂足為N,且|MN|=2|MB|.
(1)求M點(diǎn)的軌跡C的方程;
(2)當(dāng)M點(diǎn)在C上移動(dòng)時(shí),|MN|能否成為|MA|與|MB|的等比中項(xiàng)?若能求出M點(diǎn)的坐標(biāo),若不能說(shuō)明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A到圖形C上每一個(gè)點(diǎn)的距離的最小值稱(chēng)為點(diǎn)A到圖形C的距離.已知點(diǎn)A(1,0),圓C:x2+2x+y2=0,那么平面內(nèi)到圓C的距離與到點(diǎn)A的距離之差為1的點(diǎn)的軌跡是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案