【題目】為了解某高校學(xué)生中午午休時間玩手機情況,隨機抽取了100名大學(xué)生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均午休時間的頻率分布直方圖,將日均午休時玩手機不低于40分鐘的學(xué)生稱為“手機控”.
(1)求列聯(lián)表中未知量的值;
非手機控 | 手機控 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)能否有的把握認(rèn)為“手機控與性別有關(guān)”?
.
0.05 | 0.10 | |
3.841 | 6.635 |
【答案】(1),,,;(2)沒有把握認(rèn)為“手機控”與性別有關(guān).
【解析】
(1)由頻率分布直方圖能求出在抽取的100人中,可算出“手機控”人數(shù),因而得出“非手機控”的人數(shù),即可算出.
(2)求出2×2列聯(lián)表,假設(shè):“手機控”與性別沒有關(guān)系,求出,從而得到?jīng)]有95%把握認(rèn)為“手機控”與性別有關(guān).
(1)由頻率分布直方圖可知,在抽取的100人中,
“手機控”有:人,非手機控75人,
∴,,,;
(2)從而列聯(lián)表如下:
非手機控 | 手機控 | 合計 | |
男 | 30 | 15 | 45 |
女 | 45 | 10 | 55 |
合計 | 75 | 25 | 100 |
假設(shè):“手機控”與性別沒有關(guān)系.
將列聯(lián)表中的數(shù)據(jù)代入公式,計算得:,
當(dāng)成立時,,
∴,所以沒有把握認(rèn)為“手機控”與性別有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求的普通方程和的直角坐標(biāo)方程;
(Ⅱ)若與交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市(如圖)的東偏南方向300千米的海面處,并以20千米/時的速度向西偏北45°方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60千米,并以10千米/時的速度不斷增大,問幾個小時后該城市開始受到臺風(fēng)的侵襲?受到臺風(fēng)的侵襲的時間有多少小時?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km.
(I)設(shè),將表示成的函數(shù)關(guān)系式;
(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)的圖象向右平移一個單位,所得圖象與函數(shù)的圖象關(guān)于直線對稱;已知偶函數(shù)滿足,當(dāng)時,;若函數(shù)有五個零點,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①已知向量與的夾角是鈍角,則實數(shù)的取值范圍是;
②函數(shù)與的圖像關(guān)于對稱;
③函數(shù)的最小正周期為;
④函數(shù)為周期函數(shù);
⑤函數(shù)的圖像關(guān)于點對稱的函數(shù)圖像的解析式為
其中正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足,.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)給出定義:若s,t,r滿足,則稱s比t更接近于r,當(dāng)x≥1時,試比較和哪個更接近,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),, 為自然對數(shù)的底數(shù).
(1)若,,證明:當(dāng)時,恒成立;
(2)若,,在上存在兩個極值點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com