12.已知cos(α+β)=$\frac{4}{5}$,cos(α-β)=-$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),α-β∈($\frac{3π}{4}$,π),求cos2α的值.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sin(α+β),sin(α-β)的值,利用兩角和的余弦函數(shù)公式即可計(jì)算求值得解.

解答 解:∵cos(α+β)=$\frac{4}{5}$,α+β∈($\frac{7π}{4}$,2π),
可得:sin(α+β)=-$\sqrt{1-co{s}^{2}(α+β)}$=-$\frac{3}{5}$.
cos(α-β)=-$\frac{4}{5}$,α-β∈($\frac{3π}{4}$,π),
可得:sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\frac{3}{5}$.
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)
=$\frac{4}{5}$×(-$\frac{4}{5}$)-(-$\frac{3}{5}$)×$\frac{3}{5}$=-$\frac{7}{25}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知正方形的中心為直線(xiàn)x-y+1=0和2x+y+2=0的交點(diǎn),一條邊所在的直線(xiàn)方程是x+3y-5=0,求其他三邊所在直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知拋物線(xiàn)C:y2=4x的焦點(diǎn)為F,直線(xiàn)L:x=ty+1與C交于P(x1,y1),Q(x1,y2)兩點(diǎn),若$\overrightarrow{PF}$=λ$\overrightarrow{FQ}$.
(1)若λ=1,求|PQ|的長(zhǎng);
(2)若λ∈[$\frac{1}{2}$,2],求|PQ|的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M是A1D1的中點(diǎn),點(diǎn)P在側(cè)面 BCC1B1上運(yùn)動(dòng).現(xiàn)有下列命題:
①若點(diǎn)P總保持PA⊥BD1,則動(dòng)點(diǎn)P的軌跡所在的曲線(xiàn)是直線(xiàn);
②若點(diǎn)P到點(diǎn)A的距離為$\frac{2\sqrt{3}}{3}$,則動(dòng)點(diǎn)P的軌跡所在的曲線(xiàn)是圓;
③若P滿(mǎn)足∠MAP=∠MAC1,則動(dòng)點(diǎn)P的軌跡所在的曲線(xiàn)是橢圓;
④若P到直線(xiàn)BC與直線(xiàn)C1D1的距離比為2:1,則動(dòng)點(diǎn)P的軌跡所在的曲線(xiàn)是雙曲線(xiàn);
⑤若P到直線(xiàn)AD與直線(xiàn)CC1的距離相等,則動(dòng)點(diǎn)P的軌跡所在的曲線(xiàn)是拋物線(xiàn).
其中真命題的個(gè)數(shù)為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知二次函數(shù)y=f(x)的定義域?yàn)镽,f(x)在x=m時(shí)取得最值,又知y=g(x)為一次函數(shù),且f(x)+g(x)=x2+x-2.
(1)求f(x)的解析式,用m表示;
(2)當(dāng)x∈[-2,1]時(shí),f(x)≥-3恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若acosθ-sinθ=1,asinθ+cosθ=1,則sinθ=-$\frac{1}{2}$或0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在平面四邊形ABCD中,AB⊥AD,BD⊥CD,且AB=AD=DC=2,點(diǎn)M是BD的中點(diǎn),現(xiàn)將平面四邊形ABCD沿對(duì)角線(xiàn)BD折起成四面體PBCD.
(1)當(dāng)平面PBD⊥平面CBD時(shí),求證:BP⊥平面PCD;
(2)在(1)的條件下,求二面角M-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知某一隨機(jī)變量ξ的概率分布如下,且E(ξ)=6.3,則a的值為7.
ξ4a9
P0.50.1b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.我省某校要進(jìn)行一次月考,一般考生必須考5 門(mén)學(xué)科,其中語(yǔ)、數(shù)、英、綜合這四科是必考科目,另外一門(mén)在物理、化學(xué)、政治、歷史、生物、地理、英語(yǔ)Ⅱ中選擇.為節(jié)省時(shí)間,決定每天上午考兩門(mén),下午考一門(mén)學(xué)科,三天半考完.
(1)若語(yǔ)、數(shù)、英、綜合四門(mén)學(xué)科安排在上午第一場(chǎng)考試,則“考試日程安排表”有多少種不同的安排方法;
(2)如果各科考試順序不受限制,求數(shù)學(xué)、化學(xué)在同一天考的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案