如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的對應(yīng)過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上(線段AB)的點M(如圖1);將線段AB圍成一個圓,使兩端點A、B恰好重合(如圖2);再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上;點A的坐標(biāo)為(0,1)(如圖3),當(dāng)點M從A到B是逆時針運動時,圖3中直線AM與x軸交于點N(n,0),按此對應(yīng)法則確定的函數(shù)使得m與n對應(yīng),即
f(m)=n.

對于這個函數(shù)y=f(x),有下列命題:
;  ②f(x)的圖象關(guān)于對稱;  ③若,則;  ④f(x)在(0,1)上單調(diào)遞增.
其中正確的命題個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:由題中對映射運算描述,對四個命題逐一判斷其真?zhèn),①因為M在以(1,1-)為圓心,(1-)為半徑的圓上運動,當(dāng)m=時,點N的坐標(biāo)為(-1,0),故f()=-1;②可由圖3中圓關(guān)于Y軸的對稱判斷出正誤;③由,得到∠ANO=30°,∠OAN=60°,由此求出x;④可由圖3得到M的運動規(guī)律觀察出函數(shù)值的變化,得出單調(diào)性.
解答:解:如圖,因為M在以(1,1-)為圓心,(1-)為半徑的圓上運動,
對于①當(dāng)m=.M的坐標(biāo)為(-,1-),直線AM方程y=x+1,所以點N的坐標(biāo)為(-1,0),故f()=-1,故①正確.
②是正確命題,由圖3可以看出,當(dāng)M點的位置離中間位置相等時,N點關(guān)于Y軸對稱,即此時函數(shù)值互為相反數(shù),故可知f(x)的圖象關(guān)于點 對稱.
③是正確命題.∵,
∴∠ANO=30°,∴∠OAN=60°,

④是正確命題,由圖3可以看出,m由0增大到1時,M由A運動到B,此時N由x的負(fù)半軸向正半軸運動,由此知,N點的橫坐標(biāo)逐漸變大,故f(x)在定義域上單調(diào)遞增是正確的;
綜上知,①③④是正確命題,
故選D.
點評:本題考查映射的概念,解答本題關(guān)鍵是理解題設(shè)中所給的對應(yīng)關(guān)系,正確認(rèn)識三個圖象的意義,由此對四個命題的正誤作出判斷,本題題型新穎,寓數(shù)于形,是一個考查理解能力的題,對題設(shè)中所給的關(guān)系進(jìn)行探究,方可得出正確答案,本題易因為理解不了題意而導(dǎo)致無法下手,較抽象,是難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、如圖展示了一個由區(qū)間(0,4)到實數(shù)集R的映射過程:區(qū)間(0,4)中的實數(shù)m對應(yīng)數(shù)軸上的點M(如圖),將線段AB圍成一個正方形,使兩端點A、B恰好重合(如圖),再將這個正方形放在平面直角坐標(biāo)系中,使其中兩個頂點在y軸上,點A的坐標(biāo)為(0,4)(如圖),若圖中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.現(xiàn)給出以下命題:
①f(2)=0;
②f(x)的圖象關(guān)于點(2,0)對稱;
③f(x)在(3,4)上為常數(shù)函數(shù);④f(x)為偶函數(shù).
其中正確命題的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖1;將線段AB圍成一個圓,使兩端點A,B恰好重合,如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),如圖3.圖3中直線AM與x軸交于點N(n,0),則m的像就是n,記作f(m)=n.則在下列說法中正確命題的個數(shù)為( 。
①f(
1
4
)=1;②f(x)為奇函數(shù);③f(x)在其定義域內(nèi)單調(diào)遞增;④f(x)的圖象關(guān)于點(
1
2
,0
)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的對應(yīng)過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上(線段AB)的點M(如圖1);將線段AB圍成一個圓,使兩端點A、B恰好重合(如圖2);再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上;點A的坐標(biāo)為(0,1)(如圖3),當(dāng)點M從A到B是逆時針運動時,圖3中直線AM與x軸交于點N(n,0),按此對應(yīng)法則確定的函數(shù)使得m與n對應(yīng),即
f(m)=n.

對于這個函數(shù)y=f(x),有下列命題:
f(
1
4
)=-1
;  ②f(x)的圖象關(guān)于(
1
2
,0)
對稱;  ③若f(x)=
3
,則x=
5
6
;  ④f(x)在(0,1)上單調(diào)遞增.
其中正確的命題個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•資陽一模)如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),在圖形變化過程中,圖①中線段AM的長度對應(yīng)于圖③中的弧ADM的長度,如圖③.圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.

給出下列命題:
①f(
1
4
)=1;
②f(x)是奇函數(shù);
③f(x)在定義域上單調(diào)遞增;
④f(x)的圖象關(guān)于點(
1
2
,0)對稱. 
則所有真命題的序號是
③④
③④
.(填出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應(yīng)線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點,長軸在x軸上,已知此時點A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應(yīng)的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(
k
2
,0)
對稱;⑤函數(shù)f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是( 。

查看答案和解析>>

同步練習(xí)冊答案