已知函數(shù)f(x)=
2x,x≥4
f(x+2),x<4
,則f(1+log23)的值為( 。
A、6B、12C、24D、36
考點(diǎn):分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達(dá)式,代入即可得到結(jié)論.
解答:解:∵2<1+log23<3,
∴4<2+1+log23<5,即4<log224<5,
∵當(dāng)x<4時(shí),f(x)=f(x+2),
∴f(1+log23)=f(2+1+log23)=f(log224)=2log224=24,
故選:C
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,根據(jù)分段函數(shù)的表達(dá)式以及函數(shù)的周期性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(1,+∞)上是增函數(shù)的是( 。
A、y=-x+1
B、y=31-x
C、y=-(x-1)2
D、y=
1
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2,x≤0
lnx,x>0.
,若函數(shù)y=|f(x)|-k的零點(diǎn)恰有四個(gè),則實(shí)數(shù)k的取值范圍為(  )
A、(1,2]
B、(1,2)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
4
x+1,x≤1
lnx,x>1
,則方程f(x)=ax恰有兩個(gè)不同實(shí)數(shù)根時(shí),實(shí)數(shù)a的取值范圍是( 。ㄗⅲ篹為自然對(duì)數(shù)的底數(shù))
A、(0,
1
e
B、[
1
4
,
1
e
]
C、(0,
1
4
D、[
1
4
,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)g(x)=x2-2(x∈R),f(x)=
g(x)+x+4,x<g(x)
g(x)-x,x≥g(x)
,則f(x)的值域是(  )
A、[-
9
4
,0]∪(1,+∞)
B、[0,+∞)
C、[
9
4
,+∞)
D、[-
9
4
,0]∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的運(yùn)算“⊕”:對(duì)實(shí)數(shù)x和y,x⊕y=
x(x≥y)
y(x<y)
,設(shè)函數(shù)f(x)=(x2+2x-2)⊕(-x2+2),x∈R.若函數(shù)f(x)+a的圖象與直線y=1恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x,x≤0
log2x,x>0
,【若對(duì)任意給定的y∈(2,+∞),都存在唯一的x∈R,滿足f(f(x))=2a2y2+ay,則正實(shí)數(shù)a的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+
1
x
x∈[-2,-1]
-2,x∈[-1,
1
2
)
x-
1
x
,
x∈[
1
2
,2]
,函數(shù)g(x)=ax-2,x∈[-2,2],對(duì)任意x1∈[-2,2],總存在x∈[-2,2],使得g(x)=f(x)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y-3=0的傾斜角的大小是( 。
A、
π
4
B、
3
4
π
C、1
D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案