12.函數(shù)f(x)=sinxcosx-cos2x+$\frac{1}{2}$在區(qū)間[0,$\frac{π}{2}$]上的最小值是( 。
A.-1B.-$\frac{1}{2}$C.1D.0

分析 把函數(shù)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式積特殊角的三角函數(shù)值化為一個(gè)角的正弦函數(shù),由x的范圍求出這個(gè)角的范圍,利用正弦函數(shù)的圖象與性質(zhì)即可求出f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值

解答 解:∵f(x)=sinxcosx-cos2x+$\frac{1}{2}$=$\frac{1}{2}$sin2x-$\frac{1}{2}$cos2x=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)
∴當(dāng)x∈[0,$\frac{π}{2}$]時(shí),
∴-$\frac{π}{4}$≤2x-$\frac{π}{4}$≤$\frac{3π}{4}$,
∴當(dāng)2x-$\frac{π}{4}$=-$\frac{π}{4}$時(shí),
函數(shù)$f(x)=\frac{{\sqrt{2}}}{2}sin(2x-\frac{π}{4})$的最小值為$-\frac{1}{2}$,
故選B.

點(diǎn)評(píng) 此題考查了二倍角的正弦、余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,以及正弦函數(shù)的圖象與性質(zhì),熟練掌握公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知過點(diǎn)P($\frac{1}{2}$,0)的直線l與拋物線x2=y交于不同的兩點(diǎn)A,B,點(diǎn)Q(0,-1),連接AQ、BQ的直線與拋物線的另一交點(diǎn)分別為N,M,如圖所示.
(1)若$\overrightarrow{PB}$=2$\overrightarrow{PA}$,求直線l的斜率.
(2)試判斷直線MN的斜率是否為定值,如果是請(qǐng)求出此定值,如果不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若0<x1<x2<1,則( 。
A.${x_2}{e^{x_1}}>{x_1}{e^{x_2}}$B.${x_2}{e^{x_1}}<{x_1}{e^{x_2}}$
C.lnx2-lnx1>2x2-2x1D.lnx2-lnx1<2x2-2x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F2和上頂點(diǎn)B在直線3x+$\sqrt{3}$y-3=0上,M、N為橢圓C上不同兩點(diǎn),且滿足kBM•kBN=$\frac{1}{4}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線MN恒過定點(diǎn);
(3)求△BMN的面積的最大值,并求此時(shí)MN直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知角α的終邊經(jīng)過點(diǎn)(-4,-3),那么tanα等于( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知命題P:函數(shù)y=lg(x2+2x+a)的定義域?yàn)镽;命題Q:不等式(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立.若P∨Q是真命題,P∧Q是假命題;求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線x+2ay-1=0與直線x-4y=0平行,則a的值為( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an} 中,a5=3,a6=-2
(1)求數(shù)列{an}的首項(xiàng)a1和公差d;
(2)求數(shù)列{an}的通項(xiàng)公式an 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知常數(shù)m≠0,n≥2且n∈N,二項(xiàng)式(1+mx)n的展開式中,只有第6項(xiàng)的二項(xiàng)式系數(shù)最大,第三項(xiàng)系數(shù)是第二項(xiàng)系數(shù)的9倍.
(1)求m、n的值;
(2)若記(1+mx)n=a0+a1(x+8)+a2(x+8)2+…+an(x+8)n,求a0-a1+a2-a3+…+(-1)nan除以6的余數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案