【題目】如圖,在三棱柱中,側(cè)面是邊長為2的正方形,點是棱的中點.
(1)證明:平面.
(2)若三棱錐的體積為4,求點到平面的距離.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費支出(萬元)和銷售額(萬元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與的關(guān)系,求關(guān)于的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關(guān)系,可得回歸方程:,
經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的分別約為和,請用說明選擇哪個回歸模型更合適,并用此模型預(yù)測超市廣告費支出為3萬元時的銷售額.
參數(shù)數(shù)據(jù)及公式:,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,D,E,F(xiàn)分別是B1A1 , CC1 , BC的中點,AE⊥A1B1 , D為棱A1B1上的點.
(1)證明:DF⊥AE;
(2)求平面DEF與平面ABC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班在一次個人投籃比賽中,記錄了在規(guī)定時間內(nèi)投進個球的人數(shù)分布情況:
進球數(shù)(個) | 0 | 1 | 2 | 3 | 4 | 5 |
投進個球的人數(shù)(人) | 1 | 2 | 7 | 2 |
其中和對應(yīng)的數(shù)據(jù)不小心丟失了,已知進球3個或3個以上,人均投進4個球;進球5個或5個以下,人均投進2.5個球.
(1)投進3個球和4個球的分別有多少人?
(2)從進球數(shù)為3,4,5的所有人中任取2人,求這2人進球數(shù)之和為8的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中裝有除顏色外其他均相同的編號為a,b的兩個黑球和編號為c,d,e的三個紅球,從中任意摸出兩個球.
(1)求恰好摸出1個黑球和1個紅球的概率:
(2)求至少摸出1個黑球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|﹣|x+1|.
(1)解不等式f(x)>1.
(2)當(dāng)x>0時,函數(shù)g(x)= (a>0)的最小值總大于函數(shù)f(x),試求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個女子織布,每天比前一天多織相同量的布,第一天織五尺,一個月(按30天計)共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有( )
A.0.55尺
B.0.53尺
C.0.52尺
D.0.5尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點C作⊙O的切線,交BD的延長線于點P,交AD的延長線于點E.
(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com