精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)在平面直角坐標系中,已知,),,O為坐標原點,若實數使向量,滿足:,設點P的軌跡為
(Ⅰ)求的方程,并判斷是怎樣的曲線;
(Ⅱ)當時,過點且斜率為1的直線與相交的另一個交點為,能否在直線上找到一點,恰使為正三角形?請說明理由.
(Ⅰ)W的方程為,
焦點在軸上的雙曲線,
,圓心在原點,半徑為3的圓,
焦點在軸上的橢圓,
,直線 ;
(Ⅱ)
(Ⅰ)由已知…… 2分
焦點在軸上的雙曲線
,圓心在原點,半徑為3的圓
焦點在軸上的橢圓
,直線             ……………………… 6分
(Ⅱ),設直線方程為
      ……………………………10分
    ,  
在直線上,離最短距離為6,
無法形成正三角形    ……………………………12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題10分)
,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)點為當時軌跡E上的任意一點,定點的坐標為(3,0),
滿足,試求點的軌跡方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

是⊙上的任意一點,過垂直軸于,動點滿足。
(1)求動點的軌跡方程;
(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點、,使的中點,若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

定長為3的線段兩端點分別在軸,軸上滑動,在線段上,且
(1)求點的軌跡的方程.
(2)設過且不垂直于坐標軸的直線交軌跡兩點.問:線段上是否存在一點,使得以為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(13分)
在直角坐標系中,點M到點的距離之和是4,點M的軌跡是C,直線與軌跡C交于不同的兩點P和Q.
(I)求軌跡C的方程;
(II)是否存在常數?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是三角形的一個內角,且,則方程所表示的曲線是(  )
A.焦點在軸上的橢圓B.焦點在軸上的橢圓
C.焦點在軸上的雙曲線D.焦點在軸上的雙曲線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

與直線平行的拋物線的切線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

動點在正方體的面及其邊界運動,且到棱與棱的距離相等,則動點的軌跡是(  )
A.一條線段B.一段圓弧C.一段橢圓弧D.一段拋物線弧

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

直線與曲線交點的個數是
A.0 B.1C.2D.3

查看答案和解析>>

同步練習冊答案