6.在△ABC中,a=15,b=10,C=60°,則S△ABC等于( 。
A.$\frac{75}{2}$B.$\frac{{75\sqrt{3}}}{2}$C.$\frac{{75\sqrt{2}}}{2}$D.$\frac{{75\sqrt{6}}}{2}$

分析 由已知利用三角形面積公式即可計(jì)算得解.

解答 解:在△ABC中,∵a=15,b=10,C=60°,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×15×10×\frac{\sqrt{3}}{2}$=$\frac{75\sqrt{3}}{2}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了三角形面積公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{1}{2}$an+$\frac{2n+3}{{2}^{n+1}}$(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.將(-1.8)${\;}^{\frac{2}{3}}}$,2${\;}^{\frac{2}{3}}}$,(-2)${\;}^{\frac{1}{3}}}$由大到小排列為${2^{\frac{2}{3}}}>{(-1.8)^{\frac{2}{3}}}>{(-2)^{\frac{1}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若不等式ax2+bx+c>0的解集是(-1,2),則不等式bx2-ax-c>0的解集為(-∞,-2)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知變量x,y滿足$\left\{\begin{array}{l}0≤x≤y\\ x+y≥2\\ 2x+y≤6\end{array}$,則z=2x-y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=sinωx(ω>0)在區(qū)間[${\frac{π}{3}$,$\frac{π}{2}}$]上遞減,則ω=( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f($\sqrt{x+1}$)的定義域?yàn)閇0,3],則函數(shù)y=f(1-x)的定義域[-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是( 。
A.y=lnxB.y=x3-xC.y=-$\frac{1}{x}$D.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式($\frac{1}{2}$)${\;}^{2{x}^{2}-6x+9}$≤($\frac{1}{2}$)${\;}^{{x}^{2}+3x+19}$的解集是( 。
A.[-1,10]B.(-∞,-1)∪[10,+∞]C.RD.(-∞,-1]∪[10,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案