已知線段,的中點為,動點滿足(為正常數(shù)).
(1)建立適當?shù)闹苯亲鴺讼,求動點所在的曲線方程;
(2)若,動點滿足,且,試求面積的最大值和最小值.
(1);(2)的最小值為,最大值為1.
解析試題分析:(1)先以為圓心,所在直線為軸建立平面直角坐標系,以與的大小關(guān)系進行分類討論,從而即可得到動點所在的曲線;
(2)當時,其曲線方程為橢圓,設(shè),,的斜率為,則的方程為,將直線的方程代入橢圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合涉及弦長問題,常用“韋達定理法”設(shè)而不求計算弦長(即應(yīng)用弦長公式),求得△AOB面積,最后求出面積的最大值即可,從而解決問題.
(1)以為圓心,所在直線為軸建立平面直角坐標系.若,即,動點所在的曲線不存在;若,即,動點所在的曲線方程為;若,即,動點所在的曲線方程為.……4分
(2)當時,其曲線方程為橢圓.由條件知兩點均在橢圓上,且
設(shè),,的斜率為,則的方程為,的方程為解方程組,得,
同理可求得,
面積=
令則
令所以,即
當時,可求得,故,
故的最小值為,最大值為1.
考點:直線與圓錐曲線的綜合問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓G:經(jīng)過橢圓的右焦點F及上頂點B,過橢圓外一點(m,0)()傾斜角為的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的左右焦點為,上頂點為,點關(guān)于對稱,且
(1)求橢圓的離心率;
(2)已知是過三點的圓上的點,若的面積為,求點到直線距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為(,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+與雙曲線C恒有兩個不同的交點A和B,且·>2(其中O為原點),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分14分)如圖在平面直角坐標系中,分別是橢圓的左右焦點,頂點的坐標是,連接并延長交橢圓于點,過點作軸的垂線交橢圓于另一點,連接.
(1)若點的坐標為,且,求橢圓的方程;
(2)若,求橢圓離心率的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:()的左焦點為,離心率為.
(1)求橢圓C的標準方程;
(2)設(shè)O為坐標原點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的左、右焦點分別為,點在橢圓上,,,的面積為.
(1)求該橢圓的標準方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=,一條準線的方程是x=2
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)動點P滿足:=+2,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣,
問:是否存在定點F,使得|PF|與點P到直線l:x=2的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com