【題目】【2015高考天津,文20】已知函數(shù)

I)求的單調(diào)區(qū)間;

II)設(shè)曲線軸正半軸的交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為,求證:對(duì)于任意的正實(shí)數(shù),都有;

III)若方程有兩個(gè)正實(shí)數(shù)根,求證:.

【答案】(I 的單調(diào)遞增區(qū)間是 ,單調(diào)遞減區(qū)間是;(II)見(jiàn)試題解析;(III)見(jiàn)試題解析.

【解析】

I)由,可得 的單調(diào)遞增區(qū)間是 ,單調(diào)遞減區(qū)間是;(II, ,證明 單調(diào)遞增,在單調(diào)遞減,所以對(duì)任意的實(shí)數(shù)x, ,對(duì)于任意的正實(shí)數(shù),都有;(III)設(shè)方程 的根為 ,可得,由 單調(diào)遞減,得 ,所以 .設(shè)曲線 在原點(diǎn)處的切線為 方程 的根為 ,可得 ,由 在在 單調(diào)遞增,且 ,可得 所以 .

試題解析:(I)由,可得,當(dāng) ,即 時(shí),函數(shù) 單調(diào)遞增;當(dāng) ,即 時(shí),函數(shù) 單調(diào)遞減.所以函數(shù) 的單調(diào)遞增區(qū)間是 ,單調(diào)遞減區(qū)間是.

II)設(shè) ,則 , 曲線 在點(diǎn)P處的切線方程為 ,即,令 .

由于 單調(diào)遞減,故 單調(diào)遞減,又因?yàn)?/span>,所以當(dāng)時(shí),,所以當(dāng)時(shí),,所以 單調(diào)遞增,在單調(diào)遞減,所以對(duì)任意的實(shí)數(shù)x, ,對(duì)于任意的正實(shí)數(shù),都有.

III)由(II)知 ,設(shè)方程 的根為 ,可得,因?yàn)?/span> 單調(diào)遞減,又由(II)知 ,所以 .類似的,設(shè)曲線 在原點(diǎn)處的切線為 可得 ,對(duì)任意的,有 .設(shè)方程 的根為 ,可得 ,因?yàn)?/span> 單調(diào)遞增,且 ,因此, 所以 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)上的最小值;

(Ⅱ)設(shè)函數(shù),若函數(shù)的零點(diǎn)有且只有一個(gè),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入 萬(wàn)元廣告費(fèi)用,并將各地的銷售收益(單位:萬(wàn)元)繪制成如圖所示的頻率分布直方圖.由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的.

(Ⅰ)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(Ⅱ)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到上表:表中的數(shù)據(jù)顯示之間存在線性相關(guān)關(guān)系,求關(guān)于的回歸方程;

(Ⅲ)若廣告投入萬(wàn)元時(shí),實(shí)際銷售收益為.萬(wàn)元,求殘差.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所得的利潤(rùn)依次為M萬(wàn)元和N萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系可由經(jīng)驗(yàn)公式給出:M=,N= (≥1).今有8萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,且乙商品至少要求投資1萬(wàn)元,

設(shè)投入乙種商品的資金為萬(wàn)元,總利潤(rùn);

2)為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,,,都是邊長(zhǎng)為2的等邊三角形,設(shè)在底面的射影為.

(1)求證:中點(diǎn);

(2)證明:;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形為直角梯形,,,中點(diǎn),,交于點(diǎn),沿將四邊形折起,連接

(1)求證:平面;

(2)若平面平面

(I)求二面角的平面角的大。

(II)線段上是否存在點(diǎn),使平面,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的直觀圖和三視圖如下:

(1)求證: 底面;

(2)求三棱錐的體積;

(3)求三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016·哈爾濱高二檢測(cè))如圖,下列四個(gè)幾何體中,它們的三視圖(正視圖、俯視圖、側(cè)視圖)有且僅有兩個(gè)相同而另一個(gè)不同的兩個(gè)幾何體是________.

(1)棱長(zhǎng)為2的正方體    (2)底面直徑和高均為2的圓柱

(3)底面直徑和高

均為2的圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】私家車(chē)的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開(kāi)私家車(chē),盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實(shí)施了機(jī)動(dòng)車(chē)車(chē)尾號(hào)限行,我市某報(bào)社為了解市區(qū)公眾對(duì)車(chē)輛限行的態(tài)度,隨機(jī)抽查了50人,將調(diào)查情況進(jìn)行整理后制成下表:

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[1525),[2535)的被調(diào)查者中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求恰有2人不贊成的概率;

)在()的條件下,再記選中的4人中不贊成車(chē)輛限行的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案