【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù),).
(Ⅰ)當(dāng)時(shí),若曲線上存在兩點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱,求直線的參數(shù)方程;
(Ⅱ)在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,極坐標(biāo)方程為的直線與曲線相交于兩點(diǎn),若,求實(shí)數(shù)的值.
【答案】見解析
【解析】(Ⅰ)由題意,得曲線的參數(shù)方程為(為參數(shù)),
消去參數(shù),得,圓心坐標(biāo)為.……………2分
∵曲線上存在兩點(diǎn)關(guān)于點(diǎn)成中心對(duì)稱,
∴,則由,得,
所以直線的傾斜角為,……………4分
所以直線的參數(shù)方程為,即(為參數(shù)).……………6分
(Ⅱ)消去曲線的參數(shù)方程中的參數(shù)得,
圓心為,半徑為.……………7分
又直線的極坐標(biāo)方程可化為,……………8分
由,代入上式,得直線的普通方程為,
所以,∴.……………10分
【命題意圖】本題考查直線的極坐標(biāo)方程與直角坐標(biāo)方程、圓的參數(shù)方程與普通方程的互化,以及直線與圓的位置關(guān)系,意在考查轉(zhuǎn)化能力、運(yùn)算求解能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(I)求直線的極坐標(biāo)方程與曲線的參數(shù)方程;
(II)設(shè)點(diǎn)D在曲線上,且曲線在點(diǎn)D處的切線與直線垂直,試確定點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】原命題:“,為兩個(gè)實(shí)數(shù),若,則,中至少有一個(gè)不小于1”,下列說法錯(cuò)誤的是
A.逆命題為:若,中至少有一個(gè)不小于1則,為假命題
B.否命題為:若則,都小于1 ,為假命題
C.逆否命題為:若,都小于1則 ,為真命題
D.“”是“,中至少有一個(gè)不小于1”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意實(shí)數(shù)x,不等式ax2+2ax﹣(a+2)<0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.﹣1≤a≤0
B.﹣1≤a<0
C.﹣1<a≤0
D.﹣1<a<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某消防機(jī)構(gòu)為四個(gè)小區(qū)的居民代表進(jìn)行消防安全知識(shí)宣傳.在代表中,按分層抽樣的方式抽取了10名“幸運(yùn)之星”,“幸運(yùn)之星”每人獲得一份紀(jì)念品.相關(guān)數(shù)據(jù)如下:
小區(qū) | A | B | C | D |
代表人數(shù) | 45 | 60 | 30 | 15 |
(I)求此活動(dòng)中各小區(qū)“幸運(yùn)之星”的人數(shù);
(II)從B小區(qū)和C小區(qū)的“幸運(yùn)之星”中任選兩人進(jìn)行后續(xù)的活動(dòng),求這兩個(gè)人均來自B小區(qū)的概率;
(III)消防機(jī)構(gòu)在B小區(qū)內(nèi),對(duì)參加問答活動(dòng)的居民進(jìn)行了是否有興趣參加消防安全培訓(xùn)的問卷調(diào)查,統(tǒng)計(jì)結(jié)果如下(單位:人):
有興趣 | 無興趣 | 合計(jì) | |
男 | 25 | 5 | 30 |
女 | 15 | 15 | 30 |
合計(jì) | 40 | 20 | 60 |
據(jù)此判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為有興趣參加消防安全培訓(xùn)與性別有關(guān)系?
臨界值表:
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,則下列結(jié)論正確的是( )
A.f(x)為偶函數(shù)
B.f(x)為增函數(shù)
C.f(x)為周期函數(shù)
D.f(x)值域?yàn)椋ī?,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二手車經(jīng)銷商小王對(duì)其所經(jīng)營的型號(hào)二手汽車的使用年數(shù)與銷售價(jià)格(單位:萬元/輛)進(jìn)行整理,得到如下數(shù)據(jù):
使用年數(shù) | 2 | 3 | 4 | 5 | 6 | 7 |
售價(jià) | 20 | 12 | 8 | 6.4 | 4.4 | 3 |
3.00 | 2.48 | 2.08 | 1.86 | 1.48 | 1.10 |
下面是關(guān)于的散點(diǎn)圖:
(I)由散點(diǎn)圖看出,可以用線性回歸模型擬合和的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(II)求關(guān)于的回歸方程,并預(yù)測某輛型號(hào)二手汽車當(dāng)使用年數(shù)為9年時(shí),售價(jià)大約為多少?(、的值精確到)
(III)基于成本的考慮,該型號(hào)二手汽車的售價(jià)不得低于7118元,請(qǐng)根據(jù)(II)求出的回歸方程預(yù)測在收購該型號(hào)二手汽車時(shí),車輛的使用年數(shù)不得超過多少年?
參考公式:,相關(guān)系數(shù).
參考數(shù)據(jù):,,,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新生兒Apgar評(píng)分,即阿氏評(píng)分是對(duì)新生兒出生后總體狀況的一個(gè)評(píng)估,主要從呼吸、心率、反射、膚色、肌張力這幾個(gè)方面評(píng)分,滿10分者為正常新生兒,評(píng)分7分以下的新生兒考慮患有輕度窒息,評(píng)分在4分以下考慮患有重度窒息,大部分新生兒的評(píng)分多在7-10分之間,某市級(jí)醫(yī)院婦產(chǎn)科對(duì)1月份出生的新生兒隨機(jī)抽取了16名,以下表格記錄了他們的評(píng)分情況.
(1)現(xiàn)從16名新生兒中隨機(jī)抽取3名,求至多有1名評(píng)分不低于9分的概率;
(2)以這16名新生兒數(shù)據(jù)來估計(jì)本年度的總體數(shù)據(jù),若從本市本年度新生兒任選3名,記表示抽到評(píng)分不低于9分的新生兒數(shù),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com