已知函數(shù)f(x)=,x∈[1,3],
(1)求f(x)的最大值與最小值;
(2)若于任意的x∈[1,3],t∈[0,2]恒成立,求實數(shù)a的取值范圍.
(1)的最大值為,最小值為;(2).

試題分析:(1)先求導函數(shù),再求的根,再判斷根兩側(cè)導數(shù)的符號,進而判斷函數(shù)大致圖象,再從大致圖象并比較端點函數(shù)值的大小來確定最大值和最小值;(2)恒成立問題關(guān)鍵搞清變量和參數(shù)的關(guān)系,一般遵循“知道誰的范圍,誰是變量;求誰的范圍,誰是參數(shù)”的原則,該題中首先利用的最大值小于,得關(guān)于恒成立的不等式,再根據(jù),求參數(shù)的范圍.
試題解析:(1)因為函數(shù),所以,令,因為
時 ;當時,;∴上單調(diào)減函數(shù),在上單調(diào)增函數(shù),∴處取得極小值; 又,,∵,
的最大值為時函數(shù)取得最小值為
(2)由(1)知當時,,故對任意,恒成立,
只要對任意恒成立,即恒成立,記,
,解得,∴實數(shù)a的取值范圍是
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在圓上任取一點,設點軸上的正投影為點.當點在圓上運動時,動點滿足,動點形成的軌跡為曲線.
(1)求曲線的方程;
(2)已知點,若、是曲線上的兩個動點,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)的定義域為(a為實數(shù)),
(1)當時,求函數(shù)的值域。
(2)若函數(shù)在定義域上是減函數(shù),求a的取值范圍
(3)求函數(shù)上的最大值及最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+)上單調(diào)遞減的是(     )
A.y=-ln|x|B.y=x3C.y=2|x|D.y=cosx

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)在區(qū)間上為減函數(shù)的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中,是奇函數(shù),又在定義域內(nèi)為減函數(shù)的是
A.B.y=-x 3C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)是定義在R上的奇函數(shù),且它的圖像關(guān)于直線x=1對稱,若函數(shù),則 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)定義域為,且函數(shù)的圖象關(guān)于直線對稱,當 時,,(其中的導函數(shù)),若,的大小關(guān)系是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知f(x)是上偶函數(shù),當x(0,+∞)時,f(x)是單調(diào)增函數(shù),且<0的解集為                    

查看答案和解析>>

同步練習冊答案