已知橢圓短軸上的兩個頂點分別為B1、B2,焦點為F1、F2,若四邊形B1F1B2F2是正方形,則這個橢圓離心率e=


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    以上都不是
A
分析:利用正方形的兩條對角線把正方形分成個全等的等腰直角三角形,從而得到b=c,再利用a= 求出離心率.
解答:由題意得 正方形的兩條對角線把正方形分成個全等的等腰直角三角形,而這兩條對角線在兩坐標軸上,
∴b=c,又 a==c,∴=
故選A.
點評:本題考查橢圓的簡單性質(zhì)的應用,關鍵是找出 b=c.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓短軸上的兩個頂點分別為B1、B2,焦點為F1、F2,若四邊形B1F1B2F2是正方形,則這個橢圓離心率e=( 。
A、
2
2
B、
1
2
C、
3
2
D、以上都不是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓短軸上的兩個三等分點與兩個焦點構成的四邊形的周長等于長軸長,則橢圓的離心率為
10
8
10
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓短軸上的兩個頂點與兩個焦點構成一個正方形,則橢圓的離心率為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南通市通州區(qū)平潮高中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:填空題

已知橢圓短軸上的兩個頂點與兩個焦點構成一個正方形,則橢圓的離心率為   

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省江門市高考數(shù)學模擬試卷(文科)(解析版) 題型:選擇題

已知橢圓短軸上的兩個頂點分別為B1、B2,焦點為F1、F2,若四邊形B1F1B2F2是正方形,則這個橢圓離心率e=( )
A.
B.
C.
D.以上都不是

查看答案和解析>>

同步練習冊答案