10.已知方程$\frac{x^2}{k+1}+\frac{y^2}{3-k}=1$(k∈R)表示雙曲線,則k的取值范圍是(-∞,-1)∪(3,+∞).

分析 由題意可得(k+1)(3-k)<0,求解不等式得答案.

解答 解:∵方程$\frac{x^2}{k+1}+\frac{y^2}{3-k}=1$(k∈R)表示雙曲線,
∴(k+1)(3-k)<0,解得:k<-1或k>3.
∴k的取值范圍是:(-∞,-1)∪(3,+∞).
故答案為:(-∞,-1)∪(3,+∞).

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.三棱錐P-ABC的四個頂點都在半徑為5的球面上,底面ABC所在的小圓面積為16π,則該三棱錐的高的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖是某幾何體的三視圖,其中正視圖為正方形,俯視圖是腰長為2的等腰直角三角形,則該幾何體的體積為$\underline{\frac{8}{3}}$;表面積為6+4$\sqrt{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.國家規(guī)定個人稿費納稅辦法如下:不超過800元的不納稅;超過800元而不超過4000元的按超過800元部分的14%納稅;超過4000元的按全部稿費的11%納稅,設(shè)扣稅前應(yīng)得稿費為x元,應(yīng)納稅額為y元.
(1)求y關(guān)于x的函數(shù)解析式;
(2)已知某作家出版一本書,共納稅420元,求他的稿費是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow m=(1,1)$,向量$\overrightarrow{m}$與向量$\overrightarrow{n}$的夾角為135°,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求$\overrightarrow{n}$;
(2)若$\overrightarrow n$與$\overrightarrow q=(1,0)$的夾角為$\frac{π}{2}$,$\overrightarrow p=(cosA,2{cos^2}\frac{C}{2})$,其中∠A,∠B,∠C為三角形三內(nèi)角,$B=\frac{π}{2}$,求$|\overrightarrow p+\overrightarrow n|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(理科)定義:若各項為正實數(shù)的數(shù)列{an}滿足${a_{n+1}}=\sqrt{a_n}(n∈{N^*})$,則稱數(shù)列{an}為“算術(shù)平方根遞推數(shù)列”.
已知數(shù)列{xn}滿足${x_n}>0,n∈{N^*}$,且${x_1}=\frac{9}{2}$,點(xn+1,xn)在二次函數(shù)f(x)=2x2+2x的圖象上.
(1)試判斷數(shù)列{2xn+1}(n∈N*)是否為算術(shù)平方根遞推數(shù)列?若是,請說明你的理由;
(2)記yn=lg(2xn+1)(n∈N*),求證:數(shù)列{yn}是等比數(shù)列,并求出通項公式y(tǒng)n;
(3)從數(shù)列{yn}中依據(jù)某種順序自左至右取出其中的項${y_{n_1}},{y_{n_2}},{y_{n_3}},…$,把這些項重新組成一個新數(shù)列{zn}:${z_1}={y_{n_1}},{z_2}={y_{n_2}},{z_3}={y_{n_3}},…$.
若數(shù)列{zn}是首項為${z_1}={(\frac{1}{2})^{m-1}}$、公比為$q=\frac{1}{2^k}(m,k∈{N^*})$的無窮等比數(shù)列,且數(shù)列{zn}各項的和為$\frac{16}{63}$,求正整數(shù)k、m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-|x|,x≤1}\\{(x-1)^{2},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{4}{5}$-f(1-x),則函數(shù)y=f(x)-g(x)的零點的個數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,復(fù)數(shù)z=(m-1)(m-2)+(m-2)i,m∈R,若z是純虛數(shù),則m=( 。
A.1B.2C.1或2D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)y=f(x)的定義域是[-2,3],則函數(shù)y=f(x+1)+f(x-1)的定義域為[-1,2].

查看答案和解析>>

同步練習(xí)冊答案