【題目】如果,在中, , , , 是內(nèi)的一點(diǎn).
(1)若是等腰直角三角形的直角頂點(diǎn),求的長(zhǎng);
(2)若,設(shè),求的面積的解析式,并求的最大值.
【答案】(1)PA=(2)當(dāng)θ=時(shí),△PBC面積的最大值為
【解析】試題分析: 根據(jù)題目條件求出的大小,根據(jù)余弦定理即可求出;
在中,根據(jù)正弦定理,用含的式子表達(dá)出, ,然后根據(jù)
,可以求出的解析式,最后根據(jù)正弦函數(shù)的單調(diào)性,可以求出的最大值。
解析:(1)解法一:∵P是等腰直角三角形PBC的直角頂點(diǎn),且BC=2,
∴∠PCB=,PC=,又∵∠ACB=,∴∠ACP=,
在△PAC中,由余弦定理得PA2=AC2+PC2-2AC·PCcos=5,
∴PA=.
(2)在△PBC中,∠BPC=,∠PCB=θ,
∴∠PBC=-θ,由正弦定理得==,
∴PB=sinθ,PC= ,∴△PBC的面積S(θ)=PB·PCsin
= sinθ=2sinθcosθ-sin2θ=sin2θ+cos2θ-
= -,θ∈,
∴當(dāng)θ=時(shí),△PBC面積的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意n∈N* , 都有(an﹣1)(an+3)=4Sn , 其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求證數(shù)列{an}是等差數(shù)列;
(2)若數(shù)列{ }的前n項(xiàng)和為Tn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.
(1)設(shè)為參數(shù),若,求直線的參數(shù)方程;
(2)已知直線與曲線交于,設(shè),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地最近十年對(duì)某商品的需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
需要量(萬件) | 236 | 246 | 257 | 276 | 286 |
(1)利用所給數(shù)據(jù)求年需求量y與年份x之間的回歸直線方程 = x+ ;
(2)預(yù)測(cè)該地2018年的商品需求量(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為1,弧BD是以點(diǎn)A為圓心的圓。
(1)在正方形內(nèi)任取一點(diǎn)M,求事件“|AM|≤1”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點(diǎn),發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請(qǐng)據(jù)此估計(jì)圓周率π的近似值(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要測(cè)量底部不能到達(dá)的電視塔AB的高度,在C點(diǎn)測(cè)得塔頂A的仰角是45°,在D點(diǎn)測(cè)得塔頂A的仰角是30°,并測(cè)得水平面上的∠BCD=120°,CD=40m,則電視塔的高度為( )
A.40m
B.20m
C.305m
D.(20 ﹣40)m
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)將一顆骰子(一種各個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具)先后拋擲2次,以分別得到的點(diǎn)數(shù)(m,n)作為點(diǎn)P的坐標(biāo)(m,n),求:點(diǎn)P落在區(qū)域 內(nèi)的概率;
(2)在區(qū)間[1,6]上任取兩個(gè)實(shí)數(shù)(m,n),求:使方程x2+mx+n2=0有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為.曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com