2.若a∈R+,則當a+$\frac{1}{9a}$的最小值為m時,不等式m${\;}^{{x}^{2}+4x+3}$<1的解集為{x|x<-3或x>-1}.

分析 利用基本不等式求出a+$\frac{1}{9a}$的最小值m,再代入不等式m${\;}^{{x}^{2}+4x+3}$<1,化為等價的不等式x2+4x+3>0,求出解集即可.

解答 解:∵a∈R+,∴a+$\frac{1}{9a}$≥2$\sqrt{a•\frac{1}{9a}}$=$\frac{2}{3}$,
當且僅當a=$\frac{1}{9a}$,即a=$\frac{1}{3}$時取“=”;
∴a+$\frac{1}{9a}$的最小值為m=$\frac{2}{3}$;
∴不等式m${\;}^{{x}^{2}+4x+3}$<1為:
($\frac{2}{3}$)${\;}^{{x}^{2}+4x+3}$<1,
等價于x2+4x+3>0,
解得x<-3或x>-1;
故所求不等式的解集為{x|x<-3或x>-1}.
故答案為:{x|x<-3或x>-1}.

點評 本題考查了利用基本不等式求最值以及指數(shù)不等式的解法與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知a=$\sqrt{0.4}$,b=20.4,c=0.40.2,則a,b,c三者的大小關系是( 。
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow$=(4,2).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$的坐標;
(2)若$\overrightarrow{a}$-$\overrightarrow$與5$\overrightarrow{a}$+2$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知冪函數(shù)f(x)=xα(α∈R),且$f(\frac{1}{2})=\frac{{\sqrt{2}}}{2}$.
(1)求函數(shù)f(x)的解析式;
(2)證明函數(shù)f(x)在定義域上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知兩條直線l1:2x+y-2=0與l2:2x-my+4=0.
(1)若直線l1⊥l2,求直線l1與l2交點P的坐標;
(2)若l1,l2以及x軸圍成三角形的面積為1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,在一個面積為8的矩形中隨機撒一粒黃豆,若黃豆落到陰影部分的概率為$\frac{1}{4}$,則陰影部分的面積為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,在四棱臺ABCD-A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)證明:BD⊥平面ADD1A1
(Ⅱ)證明:CC1∥平面A1BD;
(Ⅲ)若DD1=AD,求直線CC1與平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列命題中為真命題的是( 。
A.命題“若x>1,則x2>1”的否命題B.命題“若x>y,則x>|y|”的逆命題
C.命題“若x=1,則x2+x-2=0”的否命題D.命題“若x2≥1,則x≥1”的逆否命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于定義在D上的函數(shù)f(x),點A(m,n)是f(x)圖象的一個對稱中心的充要條件是:對任意x∈D都有f(x)+f(2m-x)=2n,現(xiàn)給出下列三個函數(shù):
(1)f(x)=x3+2x2+3x+4
(2)$f(x)=\frac{1}{x+1}+\frac{1}{x+2}+…+\frac{1}{x+2015}$
(3)$h(x)={log_2}\frac{x}{4-x}$
這三個函數(shù)中,圖象存在對稱中心的有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

同步練習冊答案