【題目】某公司購(gòu)買了AB,C三種不同品牌的電動(dòng)智能送風(fēng)口罩.為了解三種品牌口罩的電池性能,現(xiàn)采用分層抽樣的方法,從三種品牌的口罩中抽出25臺(tái),測(cè)試它們一次完全充電后的連續(xù)待機(jī)時(shí)長(zhǎng),統(tǒng)計(jì)結(jié)果如下(單位:小時(shí)):

A

4

4

4.5

5

5.5

6

6

B

4.5

5

6

6.5

6.5

7

7

7.5

C

5

5

5.5

6

6

7

7

7.5

8

8

(Ⅰ)已知該公司購(gòu)買的C品牌電動(dòng)智能送風(fēng)口罩比B品牌多200臺(tái),求該公司購(gòu)買的B品牌電動(dòng)智能送風(fēng)口罩的數(shù)量;

(Ⅱ)從A品牌和B品牌抽出的電動(dòng)智能送風(fēng)口罩中,各隨機(jī)選取一臺(tái),求A品牌待機(jī)時(shí)長(zhǎng)高于B品牌的概率;

(Ⅲ)再?gòu)?/span>AB,C三種不同品牌的電動(dòng)智能送風(fēng)口罩中各隨機(jī)抽取一臺(tái),它們的待機(jī)時(shí)長(zhǎng)分別是a,b,c(單位:小時(shí)).這3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為.若,寫(xiě)出a+b+c的最小值(結(jié)論不要求證明).

【答案】(Ⅰ)該公司購(gòu)買的B品牌電動(dòng)智能送風(fēng)口罩的數(shù)量為800臺(tái);(Ⅱ);(Ⅲ)18.

【解析】試題分析:(Ⅰ)設(shè)該公司購(gòu)買的B品牌電動(dòng)智能送風(fēng)口罩的數(shù)量為臺(tái),則購(gòu)買的C品牌電動(dòng)智能送風(fēng)口罩為臺(tái),由此可求解結(jié)論;

(Ⅱ)設(shè)A品牌待機(jī)時(shí)長(zhǎng)高于B品牌的概率為,求得的值,即可得到結(jié)論;

(Ⅲ)根據(jù)平均數(shù)的定義,即可求解的最小值.

試題解析:

(Ⅰ)設(shè)該公司購(gòu)買的B品牌電動(dòng)智能送風(fēng)口罩的數(shù)量為x臺(tái),

則購(gòu)買的C品牌電動(dòng)智能送風(fēng)口罩為臺(tái),

由題意得,所以.

答:該公司購(gòu)買的B品牌電動(dòng)智能送風(fēng)口罩的數(shù)量為800臺(tái)

(Ⅱ)設(shè)A品牌待機(jī)時(shí)長(zhǎng)高于B品牌的概率為P,

.

答:在A品牌和B品牌抽出的電動(dòng)智能送風(fēng)口罩中各任取一臺(tái),A品牌待機(jī)時(shí)長(zhǎng)高于B品牌的概率為.

(Ⅲ)由題意得,有三個(gè)數(shù) 構(gòu)成數(shù)據(jù)的平均數(shù)為 ,表中數(shù)據(jù)的平均數(shù)為 ,所以,所以,所以 的最小值為18

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)證明數(shù)列{an﹣n}為等比數(shù)列
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)的動(dòng)點(diǎn)P到定直線lx的距離與點(diǎn)P到定點(diǎn)F(0)之比為.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)若點(diǎn)N為軌跡C上任意一點(diǎn)(不在x軸上),過(guò)原點(diǎn)O作直線AB,交(1)中軌跡C于點(diǎn)A、B,且直線ANBN的斜率都存在,分別為k1、k2,問(wèn)k1·k2是否為定值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式ax2+5x﹣2>0的解集是
(1)求實(shí)數(shù)a的值;
(2)求不等式ax2﹣5x+a2﹣1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)對(duì)任意,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.

(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)的取值范圍;

(Ⅱ)是否存在首項(xiàng)為-1的等差數(shù)列為“K數(shù)列”,且其前n項(xiàng)和滿足

?若存在,求出的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;

(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心在軸上,并且過(guò)兩點(diǎn).

(1)求圓的方程;

(2)設(shè)直線與圓交于兩點(diǎn),那么以為直徑的圓能否經(jīng)過(guò)原點(diǎn),若能,請(qǐng)求出直線的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分10分)

(2017天津電視臺(tái)播放甲、乙兩套連續(xù)劇每次播放連續(xù)劇時(shí),需要播放廣告.已知每次播放甲、乙兩套連續(xù)劇時(shí),連續(xù)劇播放時(shí)長(zhǎng)、廣告播放時(shí)長(zhǎng)、收視人次如下表所示:

連續(xù)劇播放時(shí)長(zhǎng)(分鐘)

廣告播放時(shí)長(zhǎng)分鐘

收視人次萬(wàn)

70

5

60

60

5

25

已知電視臺(tái)每周安排的甲、乙連續(xù)劇的總播放時(shí)間不多于600分鐘,廣告的總播放時(shí)間不少于30分鐘,且甲連續(xù)劇播放的次數(shù)不多于乙連續(xù)劇播放次數(shù)的2倍.分別用,表示每周計(jì)劃播出的甲、乙兩套連續(xù)劇的次數(shù)

(1),列出滿足題目條件的數(shù)學(xué)關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;

2問(wèn)電視臺(tái)每周播出甲乙兩套連續(xù)劇各多少次,才能使收視人次最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的一點(diǎn).

(Ⅰ)求證:平面平面;

(Ⅱ)如圖(1),若,求證:平面

(Ⅲ)如圖(2),若的中點(diǎn),,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案