“(x+3)(x-2)<0”是“-3<x<0”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分條件
D.既不充分也不必要條件
【答案】分析:由“(x+3)(x-2)<0”,得“-3<x<2”,再由“-3<x<0”⇒“(x+3)(x-2)<0”,知“(x+3)(x-2)<0”是“-3<x<0”的必要而不充分條件.
解答:解:∵“(x+3)(x-2)<0”⇒“-3<x<2”,
“-3<x<0”⇒“(x+3)(x-2)<0”,
∴“(x+3)(x-2)<0”是“-3<x<0”的必要而不充分條件,
故選B.
點(diǎn)評(píng):本題考查充分條件、必要條件、充要條件的判斷和應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意不等式的性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、設(shè)集合 M={x|(x+3)(x-2)<0},N={x|1≤x≤3},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•浦東新區(qū)一模)對(duì)于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說(shuō)明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對(duì)于任意正實(shí)數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃岡模擬)與集合{x∈N|x>1,且x≤3}相等的集合是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若x≠3,且x≠2,則x2-5x+6≠0”的逆否命題是(    )

A.若x2-5x+6=0,則x=3,且x=2                  B.若x2-5x+6=0,則x=3,或x=2

C.若x2-5x+6≠0,則x=3,且x=2                 D.若x2-5x+6≠0,則x=3,或x=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年浙江省臺(tái)州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

已知集合A={x|1<x≤3},B={x|x>2},則A∩B等于( )
A.{x|1<x≤2}
B.{x|1≤x≤2}
C.{x|1≤x≤3}
D.{x|2<x≤3}

查看答案和解析>>

同步練習(xí)冊(cè)答案