10.隨機(jī)變量ξ的分布列為:
ξ0123
Px0.20.30.4
隨機(jī)變量ξ的方差D(ξ)1.

分析 由隨機(jī)變量ξ的分布列的性質(zhì)得求出x=0.1,從而得Eξ=2,由此能求出Dξ.

解答 解:由隨機(jī)變量ξ的分布列的性質(zhì)得:
x+0.2+0.3+0.4=1,解得x=0.1,
∴Eξ=0×0.1+1×0.2+2×0.3+3×0.4=2,
∴Dξ=(0-2)2×0.1+(1-2)2×0.2+(2-2)2×0.3+(3-2)2×0.4=1.
故答案為:1.

點(diǎn)評 本題考查方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意方差性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知n∈N*,給出4個表達(dá)式:①an=$\left\{\begin{array}{l}{0,n為奇數(shù)}\\{1,n為偶數(shù)}\end{array}\right.$,②an=$\frac{1+(-1)^{n}}{2}$,③an=$\frac{1+cosnπ}{2}$,④an=|sin$\frac{nπ}{2}$|,其中能作為數(shù)列:0,1,0,1,0,1,0,1,…的通項公式的是(  )
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,若sin2A+sin2B=2sin2C,則角C為( 。
A.鈍角B.直角C.銳角D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二階矩陣M的屬于特征值-1的一個特征向量為$[\begin{array}{l}{1}\\{-3}\end{array}]$,屬于特征值3的一個特征向量為$[\begin{array}{l}{1}\\{1}\end{array}]$.
(1)求矩陣M;
(2)求直線l:y=2x-1在M作用下得到的新的直線l′方程;
(3)已知向量$\overrightarrow β=[\begin{array}{l}4\\ 0\end{array}]$,求${M^5}•\overrightarrow β$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=cos($\frac{π}{2}$+x)+sin2($\frac{π}{2}$+x),x∈R,則f(x)的最大值為(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=x|x+a|+b是奇函數(shù)的充要條件是( 。
A.ab=0B.a+b=0C.a2+b2=0D.a=b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,2AB=2AD=CD,側(cè)面PAD是正三角形且垂直于底面ABCD,E是PC的中點(diǎn).
(1)求證:BE⊥平面PCD;
(2)求二面角B-PC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,PD⊥平面ABCD,AD⊥DC,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=$\frac{1}{2}$BC,求直線CD與平面PAB所成角的大小;
(2)設(shè)PD=a,且二面角A-PB-C的大小為$\frac{π}{3}$,求AD長.

查看答案和解析>>

同步練習(xí)冊答案