如圖,平面平面,
是以為斜邊的等腰直角三角形,分別為,
,的中點,,.
(I)設(shè)是的中點,證明:平面;
(II)證明:在內(nèi)存在一點,使平面,并求點到,的距離.
證明:(I)如圖,連結(jié)OP,以O(shè)為坐標(biāo)原點,分別以O(shè)B、OC、OP所在直線為軸,軸,軸,建立空間直角坐標(biāo)系O,
則,由題意得,因,因此平面BOE的法向量為,得,又直線不在平面內(nèi),因此有平面
(II)設(shè)點M的坐標(biāo)為,則,因為平面BOE,所以有,因此有,即點M的坐標(biāo)為,在平面直角坐標(biāo)系中,的內(nèi)部區(qū)域滿足不等式組,經(jīng)檢驗,點M的坐標(biāo)滿足上述不等式組,所以在內(nèi)存在一點,使平面,由點M的坐標(biāo)得點到,的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城第一中學(xué)高三第二學(xué)期期初檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,,分別為的中點.
(1)求異面直線與所成角的大小;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆重慶市高二上學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,平面⊥平面,是直角三角形,,四邊形是直角梯形,其中,,,且,是的中點,分別是的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,平面⊥平面,是直角三角形,,四邊形是直角梯形,其中,,,且,是的中點,分別是的中點.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省十二校新高考研究聯(lián)盟高三第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,平面平面,是正三角形,,.
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com