已知f(1,1)=1,f(m,n)∈N+(m,n∈N+),且對任意m,n∈N+都有①f(m,n+1)=f(m,n)+2; ②f(m+1,1)=2f(m,1).則f(2010,2011)的值為


  1. A.
    22010+4022
  2. B.
    22010+2010
  3. C.
    22010+2011
  4. D.
    22010+4020
A
分析:已知中對任意m、n∈N*都有:①f(m,n+1)=f(m,n)+2;②f(m+1,1)=2f(m,1).我們易推斷出,f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,于是求出f(2010,2011)的值.
解答:∵f(m,n+1)=f(m,n)+2;
f(m+1,1)=2f(m,1),f(1,1)=1,
∴f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,
∴f(2010,2011)=22010+4022,
故選A.
點評:本題主要考查數(shù)列遞推式的知識點,其中根據(jù)已知條件推斷出:f(n,1)=2n-1,f(n,1)=2n-1,f(m,n+1)=2m-1+2n,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=16; (3)f(5,6)=26,其中正確結論的序號為
(1)(2)(3)
(1)(2)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省臨沂一中高二(上)10月月考數(shù)學試卷(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省衡水中學高二(上)第一次調研數(shù)學試卷(理科)(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為   

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省郴州市汝城一中高二(上)第三次月考數(shù)學試卷A(解析版) 題型:填空題

已知f(1,1)=1,f(m,n)∈N*(m,n∈N*),且對任何m,n∈N*,都有:①f(m,n+1)=f(m,n)+2,②f(m+1,1)=2f(m,1),給出以下三個結論:
(1)f(1,5)=9;(2)f(5,1)=18; (3)f(5,6)=26,其中正確結論的序號為   

查看答案和解析>>

同步練習冊答案